Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Rút gọn biểu thức: \(A = \left( {4{x^2} + {y^2}} \right)\left( {2x + y} \right)\left( {2x - y} \right).\)

Bài 2. Chứng minh rằng: 

\({\left( {7x + 1} \right)^2} - {\left( {x + 7} \right)^2}  = 48\left( {{x^2} - 1} \right)\) 

Bài 3. Tìm x, biết: \(16{x^2} - {\left( {4x - 5} \right)^2} = 15.\)

Bài 4. Tìm giá trị nhỏ nhất của biểu thức: \(A = {x^2} + 2x + 3.\)

LG bài 1

Phương pháp giải:

Sử dụng: \({A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\)

Lời giải chi tiết:

Ta có:

\(A = \left( {4{x^2} + {y^2}} \right)\left( {2x + y} \right)\left( {2x - y} \right).\)

\( = \left( {4{x^2} + {y^2}} \right)\left( {4{x^2} - {y^2}} \right) \)\(\;= 16{x^4} - {y^4}.\)

LG bài 2

Phương pháp giải:

Sử dụng: \({A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\)

Lời giải chi tiết:

Ta có: 

\({\left( {7x + 1} \right)^2} - {\left( {x + 7} \right)^2} \) 

\(= \left[ {\left( {7x + 1} \right) + \left( {x + 7} \right)} \right]\left[ {\left( {7x + 1} \right) - \left( {x + 7} \right)} \right]\)

\( = \left( {8x + 8} \right)\left( {6x - 6} \right) \)

\(= 8\left( {x + 1} \right).6\left( {x - 1} \right) = 48\left( {{x^2} - 1} \right)\) (đpcm).

LG bài 3

Phương pháp giải:

Sử dụng: \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

Lời giải chi tiết:

Ta có: 

\(16{x^2} - {\left( {4x - 5} \right)^2}=15 \)

\( \Rightarrow  16{x^2} - \left( {16{x^2} - 40x + 25} \right)=15\)

\( \Rightarrow 16{x^2} - 16{x^2} + 40x - 25 =15\)

\(\Rightarrow (40x - 25 = 15\)

\(\Rightarrow 40x=40\)

 \(\Rightarrow x = 1\)

Vậy \(x=1\)

LG bài 4

Phương pháp giải:

Sử dụng: \({\left( {x + a} \right)^2} + m \ge m\) với mọi x

Dấu "=" xảy ra khi \(x=-a\)

Lời giải chi tiết:

Ta có: 

\(A = {x^2} + 2x + 1 + 2 \)

\(\;\;\;= {\left( {x + 1} \right)^2} + 2 \ge 2\) vì \({\left( {x + 1} \right)^2} \ge 0\) với mọi x 

Vậy giá trị nhỏ nhất của A bằng 2.

Dấu = xảy ra khi \(x + 1 = 0\)  hay \(x =  - 1\)

dapandethi.vn