Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu;

LG a

\({x^2} + 2x + 1\);

Phương pháp giải:

Áp dụng:

+) Bình phương của một tổng: \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)

Lời giải chi tiết:

\({x^2} + 2x + 1 \)

\(= {x^2} + 2.x.1 + {1^2} = {\left( {x + 1} \right)^2}\)

LG b

\(9{x^2} + {y^2} + 6xy\);

Phương pháp giải:

Áp dụng:

+) Bình phương của một tổng: \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)

Lời giải chi tiết:

\(9{x^2} + {y^2} + 6xy \)

\(= 9{x^2} + 6xy + {y^2} \)\(= {\left( {3x} \right)^2} + 2.3x.y + {y^2} = {\left( {3x + y} \right)^2}\)

LG c

\(25{a^2} + 4{b^2}-20ab\);  

Phương pháp giải:

Áp dụng:

+) Bình phương của một hiệu: \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

Lời giải chi tiết:

\(25{a^2} + 4{b^2}-20ab \)

\(= 25{a^2}-20ab + 4{b^2} \)

\(= {\left( {5a} \right)^2}-2.5a.2b{\rm{ }} + {\left( {2b} \right)^2}\)

\(= {\left( {5a-2b} \right)^2}\)

Hoặc 

\(25{a^2} + 4{b^2}-20ab \)

\(= 4{b^2}-20ab + 25{a^2}\)

\(= {\left( {2b} \right)^2}-2.2b.5a + {\left( {5a} \right)^2}\)

\(= {\left( {2b-5a} \right)^2}\)

LG d

\(x^2-x+\dfrac{1}{4}\).

Phương pháp giải:

Áp dụng:

+) Bình phương của một hiệu: \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

Lời giải chi tiết:

\({x^2} - x + \dfrac{1}{4} \)

\(= {x^2} - 2.x.\dfrac{1}{2} + {\left( {\dfrac{1}{2}} \right)^2} \)

\( = {\left( {x - \dfrac{1}{2}} \right)^2}\)

Hoặc 

\({x^2} - x + \dfrac{1}{4} = \dfrac{1}{4} - x + {x^2} \)

\( = {\left( {\dfrac{1}{2}} \right)^2} - 2.\dfrac{1}{2}.x + {x^2} \)\(= {\left( {\dfrac{1}{2} - x} \right)^2}\)

dapandethi.vn