Lựa chọn câu để xem lời giải nhanh hơn

Cho hai điểm \(A(-3 ; 2)\) và \(B(4 ; 3)\). Tìm tọa độ của:

LG a

 Điểm \(M\) trên trục \(Ox\) sao cho tam giác \(MAB\) vuông tại \(M.\)

Lời giải chi tiết:

Giả sử \(M(x ; 0) \in Ox \)

\(\Rightarrow\overrightarrow {AM} (x + 3 ;  - 2)  ;  \overrightarrow {BM} (x - 4 ;  - 3).\)

Tam giác \(MAB\) vuông tại \(M\) khi \(\overrightarrow {AM}  \bot \overrightarrow {BM} \) hay \(\overrightarrow {AM} .\overrightarrow {BM}  = 0\).

Từ đó ta có \((x+3).(x-4)+(-2).(-3)=0\)  hay  \(x^2-x-6=0.\)

Phương trình có hai nghiệm \(x_1=3,  x_2=-2.\)

Vậy có hai  điểm cần tìm là \(M_1(3 ; 0)  ; M_2(-2 ; 0).\)

LG b

Điểm \(N\) trên trục \(Oy\) sao cho \(NA=NB.\)

Lời giải chi tiết:

Giả sử \(N(0 ; y) \in  Oy\). Khi đó

\(\begin{array}{l}N{A^2} = N{B^2}\\ \Leftrightarrow   {(0 + 3)^2} + {(y - 2)^2} \\= {(0 - 4)^2} + {(y - 3)^2}\\ \Leftrightarrow  9 + {y^2} - 4y + 4 \\= 16 + {y^2} - 6y + 9\\ \Leftrightarrow   y = 6\end{array}\)

Vậy \(N=(0 ; 6).\)

dapandethi.vn