Đề bài

Cho \(AA'\) là một dây cung của đường tròn \((O)\) và \(M\) là một điểm nằm trên dây cung đó. Chứng minh rằng \(2\overrightarrow {MA} .\overrightarrow {MO}  = MA(MA - MA').\)

Lời giải chi tiết

(h.34).

 

Gọi \(P\) là trung điểm của \(AA’\) thì \(OP \bot AA'\) nên theo công thức hình chiếu ta có

\(2\overrightarrow {MA} .\overrightarrow {MO}  = 2\overrightarrow {MA} .\overrightarrow {MP} \). Nhưng vì \(P\) là trung điểm  của \(AA’\) nên \(2\overrightarrow {MP}  = \overrightarrow {MA}  + \overrightarrow {MA'} \).

Vậy:

\(\begin{array}{l}2\overrightarrow {MA} .\overrightarrow {MO}  = \overrightarrow {MA} .(\overrightarrow {MA}  + \overrightarrow {MA'} )\\ = M{A^2} + \overrightarrow {MA} .\overrightarrow {MA} '\\= M{A^2} - MA.MA'\\ = MA(MA - MA').\end{array}\)

dapandethi.vn