Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác \(ABC\) có \(AB=7, AC=5,\) \(\widehat A = {120^0}\).

LG a

Tính các tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AC} \) và \(\overrightarrow {AB} .\overrightarrow {BC} \).

Lời giải chi tiết:

Ta có

 \(\begin{array}{l}\overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.\cos {120^0}\\ =  - \dfrac{{35}}{2}.\\\overrightarrow {AB} .\overrightarrow {BC}  = \overrightarrow {AB} (\overrightarrow {AC}  - \overrightarrow {AB} )\\ = \overrightarrow {AB} .\overrightarrow {AC}  - {\overrightarrow {AB} ^2}\\ =  - \dfrac{{35}}{2} - 49 =  - \dfrac{{133}}{2}.\end{array}\)

LG b

Tính độ dài trung tuyến \(AM\) của tam giác (\(M\) là trung điểm của \(BC\) ).

Lời giải chi tiết:

M là trung điểm của BC nên \(\overrightarrow {AM}  = \dfrac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC)} \), suy ra

\({\overrightarrow {AM} ^2} = \dfrac{1}{4}({\overrightarrow {AB} ^2} + {\overrightarrow {AC} ^2} + 2\overrightarrow {AB} .\overrightarrow {AC} )\)

\(= \dfrac{1}{4}(49 + 25 - 35) = \dfrac{{39}}{4}\),

suy ra \(AM = \dfrac{{\sqrt {39} }}{2}.\)

dapandethi.vn