Đề bài

Chứng minh rằng hai vec tơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương  khi và chỉ khi có cặp số \(m, n\) không đồng thời bằng 0 sao cho \(m\overrightarrow a  + n\overrightarrow b  = \overrightarrow 0 \).

Hãy phát biểu điều kiện cần và đủ để hai vec tơ không cùng phương.

Lời giải chi tiết

Nếu \(\overrightarrow a  =  - \dfrac{n}{m}\overrightarrow b \), suy ra \(\overrightarrow a \) và \(\overrightarrow b\) cùng phương.

Ngược lại, giả sử \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương.

Nếu \(\overrightarrow a  = \overrightarrow 0 \) thì có thể viết \(m\overrightarrow a  + 0\overrightarrow b  = \overrightarrow 0 \) với \(m \ne 0\).

Nếu \(\overrightarrow a  \ne \overrightarrow 0 \) thì có số m sao cho \(\overrightarrow b  = m\overrightarrow a \) tức \(m\overrightarrow a  + n\overrightarrow b  = \overrightarrow 0 \), trong đó \(n =  - 1 \ne 0\).

Vậy điều kiện cần và đủ để \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương là cặp số m,n không đồng thời bằng 0 sao cho \(m\overrightarrow a  + n\overrightarrow b  = \overrightarrow 0 \).

Từ đó suy ra: điều kiện cần và đủ để \(\overrightarrow a \) và \(\overrightarrow b \) không cùng phương là nếu \(m\overrightarrow a  + n\overrightarrow b  = \overrightarrow 0 \) thì \(m = n = 0\).

dapandethi.vn