Cho hàm số \(y = 0,2{x^2}\)
LG a
Biết rằng điểm \(A(-2; b)\) thuộc đồ thị, hãy tính \(b.\) Điểm \(A’(2; b)\) có thuộc đồ thị của hàm số không\(?\) Vì sao\(?\)
Phương pháp giải:
+) Thay tọa độ điểm đồ thị đi qua vào hàm số, từ đó ta tìm được đại lượng chưa biết.
+) Đồ thị của hàm số \(y=ax^2,(a\ne0)\) là một đường cong đi qua gốc tọa độ và nhận trục tung \(Oy\) làm trục đối xứng. Nếu \(a>0\) thì đồ thị hàm số nằm phía trên trục hoành, \(O\) là điểm thấp nhất của đồ thị.
Lời giải chi tiết:
Điểm \(A (-2; b)\) thuộc đồ thị hàm số \(y = 0,2{x^2}\) nên tọa độ của điểm \(A\) nghiệm đúng phương trình hàm số
Ta có: \(b = 0,{2.(-2)^2} = 0,8\)
Điểm \(A’ (2; b)\) đối xứng với điểm \(A (-2; b)\) qua trục tung mà điểm \(A (2; b)\) thuộc đồ thị hàm số \(y = 0,2{x^2}\) nên điểm \(A’(2; b)\) thuộc đồ thị hàm số \(y = 0,2{x^2}\).
LG b
Biết rằng điểm \(C(c; 6)\) thuộc đồ thị, hãy tính \(c.\) Điểm \(D(c; -6)\) có thuộc đồ thị không\(?\) Vì sao\(?\)
Phương pháp giải:
+) Thay tọa độ điểm đồ thị đi qua vào hàm số, từ đó ta tìm được đại lượng chưa biết.
Lời giải chi tiết:
Điểm \(C (c; 6)\) thuộc đồ thị hàm số \(y = 0,2{x^2}\) nên tọa độ của điểm \(C\) nghiệm đúng phương trình hàm số:
Ta có: \(6 = 0,2.{c^2} \Leftrightarrow {c^2} =\displaystyle {6 \over {0,2}} = 30\)\( \Rightarrow c = \pm \sqrt {30} \)
Điểm \(D (c; -6)\) không thuộc đồ thị hàm số vì thay \(x=c;y=-6\) vào hàm số \(y = 0,2{x^2}\) ta được: \(0,2c^2=-6\) \(\Rightarrow 6=-6\) (vô lý)
dapandethi.vn