Lựa chọn câu để xem lời giải nhanh hơn

LG a

Xác định hàm số \(y = a{x^2}\) và vẽ đồ thị của nó, biết rằng đồ thị của nó đi qua điểm \(A (-1; 2).\)

Phương pháp giải:

Thay tọa độ điểm đi qua vào hàm số từ đó ta tìm được hệ số \(a.\)

Lời giải chi tiết:

Đồ thị hàm số đi qua \(A (-1; 2)\) nên tọa độ của \(A\) nghiệm đúng phương trình hàm số: \(2 = a{\left( { - 1} \right)^2} \Leftrightarrow a = 2\)

Hàm số đã cho: \(y = 2{x^2}\)

Vẽ đồ thị hàm số: \(y = 2{x^2}\)

\(x\)

\(-2\)

\(-1\)

\(0\)

\(1\)

\(2\)

\(y = 2{x^2}\)

\(8\)

\(2\)

\(0\)

\(2\)

\(8\)

 

LG b

Xác định đường thẳng \(y = a'x + b'\) biết rằng đường thẳng này cắt đồ thị của hàm số vừa tìm được trong câu \(a\) tại điểm \(A\) và điểm \(B\) có tung độ là \(8.\)

Phương pháp giải:

Dựa vào đồ thị, xác định tọa độ giao điểm rồi từ đó tìm được đường thẳng.

Lời giải chi tiết:

Khi \(y = 8\) suy ra: \(2{x^2} = 8 \Rightarrow x =  \pm 2\)

Do đó ta có: \({B_1}\left( { - 2;8} \right)\) và \({B_2}\left( {2;8} \right)\)

Đường thẳng \(y = a'x + b\) đi qua \(A \) và \(B_1\) nên tọa độ của \(A\) và \(B_1\) nghiệm đúng phương trình.

Điểm \(A\) thuộc đồ thị hàm số nên \(2 =  - a' + b'\)

Điểm \(B\) thuộc đồ thị hàm số nên \( 8 =  - 2a' + b'\)

Hai số \(a’\) và \(b’\) là nghiệm của hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{ - a' + b' = 2} \cr 
{ - 2a' + b' = 8} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{ - a' = 6} \cr 
{ - a' + b' = 2} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a' = - 6} \cr 
{6 + b' = 2} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a' = - 6} \cr 
{b' = - 4} \cr} } \right. \cr} \)

Phương trình đường thẳng \(AB_1\) là \(y =  - 6x - 4\)

Đường thẳng \(y = a'x + b'\) đi qua \(A\) và \(B_2\) nên tọa độ của \(A\) và \(B_2\) nghiệm đúng phương trình đường thẳng.

Điểm \(A: 2 = -a’ + b’\)

Điểm \(B_2: 8 = 2a’ + b’\)

Hai số \(a’\) và \(b’\) là nghiệm của hệ phương trình

\(\eqalign{
& \left\{ {\matrix{
{ - a' + b' = 2} \cr 
{2a' + b' = 8} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{3a' = 6} \cr 
{ - a' + b' = 2} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a' = 2} \cr 
{ - 2 + b' = 2} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a' = 2} \cr 
{b' = 4} \cr} } \right. \cr} \)

Phương trình đường thẳng \(AB_2\) là \(y = 2x + 4.\)

dapandethi.vn