Đề bài

Cho điểm \(M\) nằm trong đường tròn \((O)\) ngoại tiếp tam giác \(ABC\). Kẻ các đường thẳng \(MA, MB, MC,\) chúng cắt lại đường tròn đó lần lượt ở \(A’, B’, C’\). Chứng minh rằng:

\(\dfrac{{{S_{A'B'C'}}}}{{{S_{ABC}}}} = \dfrac{{{{({R^2} - M{O^2})}^3}}}{{{{(MA.MB.MC)}^2}}}\).

Lời giải chi tiết

(h.76).

 

\(\begin{array}{l}{S_{A'B'C'}} = \dfrac{{A'B'.B'C'.C'A'}}{{4R}}.\\{S_{ABC}} = \dfrac{{AB.BC.CA}}{{4R}}.\end{array}\)

Suy ra \(\dfrac{{{S_{A'B'C'}}}}{{{S_{ABC}}}} = \dfrac{{A'B'.B'C'.C'A'}}{{AB.BC.CA}}\)    (*)

Ta lại có

\(\Delta MAB  \sim \Delta MB'A'\) nên \(\dfrac{{A'B'}}{{AB}} = \dfrac{{MA'}}{{MB}} = \dfrac{{MA.MA'}}{{MA.MB}}\).

Do \(MA.MA' = |{\wp _{M/(O)}}| = {R^2} - M{O^2}\) nên \(\dfrac{{A'B'}}{{AB}} = \dfrac{{{R^2} - M{O^2}}}{{MA.MB}}\).

Tương tự 

\(\dfrac{{B'C'}}{{BC}} = \dfrac{{{R^2} - M{O^2}}}{{MB.MC}}  ;\) \(   \dfrac{{C'A'}}{{CA}} = \dfrac{{{R^2} - M{O^2}}}{{MC.MA}}\)            (**)

Thay (**) vào (*) ta được điều phải chứng minh.

dapandethi.vn