Video hướng dẫn giải
Rút gọn các biểu thức sau:
LG a.
\(\left( {x + 2} \right)\left( {x - 2} \right) - \left( {x - 3} \right)\left( {x + 1} \right)\);
Phương pháp giải:
- Áp dụng quy tắc: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
- Áp dụng hằng đẳng thức:
\({A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\)
Lời giải chi tiết:
\(\left( {x + 2} \right)\left( {x - 2} \right) - \left( {x - 3} \right)\left( {x + 1} \right) \)
\(= {x^2} - {2^2} - \left( {{x^2} + x - 3x - 3} \right)\)
\(={x^2} - 4 - {x^2} - x + 3x + 3\)
\( = \left( {{x^2} - {x^2}} \right) + \left( { - x + 3x} \right) + \left( {3 - 4} \right)\)
\(=2x-1\)
LG b.
\({\left( {2x + 1} \right)^2} + {\left( {3x - 1} \right)^2} + 2\left( {2x + 1} \right)\left( {3x - 1} \right)\) .
Phương pháp giải:
- Áp dụng quy tắc: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
- Áp dụng hằng đẳng thức:
\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)
Lời giải chi tiết:
\({\left( {2x + 1} \right)^2} + {\left( {3x - 1} \right)^2} + 2\left( {2x + 1} \right)\left( {3x - 1} \right)\)
\(={\left( {2x + 1} \right)^2} + 2.\left( {2x + 1} \right)\left( {3x - 1} \right)+ {\left( {3x - 1} \right)^2}\)
(Nhận thấy đây là hằng đẳng thức thứ nhất \({\left( {A + B}\right)^2} = {A^2} + 2AB + {B^2}\) với \(A=2x+1\) và \(B=3x-1\))
\(={\left[ {\left( {2x + 1} \right) + \left( {3x - 1} \right)} \right]^2}\)
\(={\left( {2x + 1 + 3x - 1} \right)^2}\)
\(={\left( {5x} \right)^2} = 25{x^2}\)
dapandethi.vn