Lựa chọn câu để xem lời giải nhanh hơn

Cho bốn điểm A(2;-1;6), B(-3;-1;-4),C(5;-1;0), D(1;2;1).

LG a

Chứng minh ABC là tam giác vuông. Tính bán kính đường tròn nội tiếp của tam giác.

Lời giải chi tiết:

Ta có \(\overrightarrow {BA}  = (5;0;10),\)

              \(\overrightarrow {CA}  = ( - 3;0;6),\)

              \(\overrightarrow {CB}  = ( - 8;0; - 4).\)

Do \(\overrightarrow {CA} .\overrightarrow {CB}  = 24 - 24 = 0\) nên ABC là tam giác vuông tại C.

\({S_{ABC}} = {1 \over 2}CA.CB = {1 \over 2}.3\sqrt 5 .4\sqrt 5  = 30.\)

Ta lại có \(p = {1 \over 2}(AB + BC + CA) \)

                  \(= {1 \over 2}(5\sqrt 5  + 3\sqrt 5  + 4\sqrt 5 ) = 6\sqrt 5 .\)

Mặt khác S = p.r, suy ra \(r = {S \over p} = {{30} \over {6\sqrt 5 }} = \sqrt 5 .\)

LG b

Tính thể tích tứ diện ABCD.

Lời giải chi tiết:

Ta có

\(\eqalign{  & \left[ {\overrightarrow {BA} ,\overrightarrow {BC} } \right] = \left( {\left| \matrix{  0 \hfill \cr  0 \hfill \cr}  \right.\left. \matrix{  10 \hfill \cr  4 \hfill \cr}  \right|;\left| \matrix{  10 \hfill \cr  4 \hfill \cr}  \right.\left. \matrix{  5 \hfill \cr  8 \hfill \cr}  \right|;\left| \matrix{  5 \hfill \cr  8 \hfill \cr}  \right.\left. \matrix{  0 \hfill \cr  0 \hfill \cr}  \right|} \right)\cr&\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;= (0;60;0),  \cr  & \overrightarrow {BD}  = (4;3;5)  \cr  &  \Rightarrow {V_{ABCD}} = {1 \over 6}\left| {\left[ {\overrightarrow {BA} .\overrightarrow {BC} } \right].\overrightarrow {BD} } \right|\cr& \;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;= {1 \over 6}\left| {0.4 + 60.3 + 0.5} \right| = 30 \cr} \)

LG c

Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD.

Lời giải chi tiết:

Gọi I(x;y;z) là tâm mặt cầu ngoại tiếp tứ diện ABCD.

Từ điều kiện \(I{A^2} = I{B^2},I{A^2} = I{C^2},I{A^2} = I{D^2}\), ta có hệ phương trình

\(\left\{ \matrix{   - 10x = 20z + 15 = 0 \hfill \cr  6x - 12z + 15 = 0 \hfill \cr   - 2x + 6y - 10z + 35 = 0 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x =  - {1 \over 2} \hfill \cr  y =  - {{13} \over 3} \hfill \cr  z = 1. \hfill \cr}  \right.\)

Vậy mặt cầu cần tìm có tâm \(I\left( { - {1 \over 2}; - {{13} \over 3};1} \right)\) và bán kính là

\(\eqalign{  & R = IC \cr&= \sqrt {{{\left( {5 + {1 \over 2}} \right)}^2} + {{\left( { - 1 + {{13} \over 3}} \right)}^2} + {{(0 - 1)}^2}}   \cr  &  = \sqrt {{{121} \over 4} + {{100} \over 9} + 1}  = \sqrt {{{1525} \over {36}}.}  \cr} \)

Do đó phương trình mặt cầu ngoại tiếp tứ diện ABCD là

\({\left( {x + {1 \over 2}} \right)^2} + {\left( {y + {{13} \over 3}} \right)^2} + {\left( {z - 1} \right)^2} = {{1525} \over {36}}.\)

dapandethi.vn