Đề bài

Chứng tỏ bốn điểm sau đây là bốn đỉnh của một hình bình hành và tính diện tích của hình bình hành đó: (1; 1; 1), (2; 3; 4), (6; 5; 2), (7; 7; 5).

Lời giải chi tiết

Ta gọi A(1;1;1), B(2;3;4); C(7;7;5); D(6; 5; 2)

Khi đó \(\overrightarrow {AB}  = \overrightarrow {DC}  = (1;2;3).\) Vậy ABCD là hình bình hành.

Suy ra \({S_{ABCD}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right]} \right|\)

Ta có :

\(\eqalign{  & \overrightarrow {AB}  = (1;2;3),\overrightarrow {AD}  = (5;4;1)  \cr  &  \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right] = \left( {\left| \matrix{  2 \hfill \cr  4 \hfill \cr}  \right.\left. \matrix{  3 \hfill \cr  1 \hfill \cr}  \right|;\left| \matrix{  3 \hfill \cr  1 \hfill \cr}  \right.\left. \matrix{  1 \hfill \cr  5 \hfill \cr}  \right|;\left| \matrix{  1 \hfill \cr  5 \hfill \cr}  \right.\left. \matrix{  2 \hfill \cr  4 \hfill \cr}  \right|} \right)\cr& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= ( - 10;14; - 6)  \cr  &  \Rightarrow {S_{ABCD}} = \sqrt {{{( - 10)}^2} + {{14}^2} + {{( - 6)}^2}} \cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \sqrt {332}  = 2\sqrt {83} .  \cr  &  \cr} \)

dapandethi.vn