Lựa chọn câu để xem lời giải nhanh hơn

LG a

Tìm vec tơ đơn vị vuông góc với trục Ox và vuông góc với vec tơ \(\overrightarrow a (3;6;8).\)

Lời giải chi tiết:

Giả sử \(\overrightarrow u (x;y;z)\) là vec tơ đơn vị phải tìm .Từ giả thiết ta có hệ :

\(\left\{ \matrix{  \left| {\overrightarrow u } \right| = 1 \hfill \cr  \overrightarrow u .\overrightarrow i  = 0 \hfill \cr  \overrightarrow u .\overrightarrow a  = 0 \hfill \cr}  \right. \Rightarrow \left\{ \matrix{  {x^2} + {y^2} + {z^2} = 1 \hfill \cr  x = 0 \hfill \cr  3x + 6y + 8z = 0 \hfill \cr}  \right.\)

\( \Leftrightarrow x = 0,y =  - {4 \over 5},z = {3 \over 5}\) hoặc \(x = 0,y = {4 \over 5},z =  - {3 \over 5}.\)

Có hai vec tơ \(\overrightarrow u \) với tọa độ là \(\left( {0; - {4 \over 5};{3 \over 5}} \right),\left( {0;{4 \over 5}; - {3 \over 5}} \right).\)

LG b

Cho vec tơ \(\overrightarrow a (1; - 2;3).\) Tìm tọa độ vec tơ \(\overrightarrow b \) cùng phương với \(\overrightarrow a ,\) biết \(\overrightarrow b \) tạo với trục Oy một góc nhọn và \(\left| {\overrightarrow b } \right| = \sqrt {14} .\)

Lời giải chi tiết:

Giả sử \(\overrightarrow b (x;y;z)\) là vec tơ phải tìm. Từ giả thiết ta có hệ

\(\eqalign{  & \left\{ \matrix{  \overrightarrow b  = k\overrightarrow a  \hfill \cr  \left| {\overrightarrow b } \right| = \sqrt {14}  \hfill \cr  \overrightarrow b .\overrightarrow j  > 0 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x = k \hfill \cr  y =  - 2k \hfill \cr  z = 3k \hfill \cr  {x^2} + {y^2} + {z^2} = 14,y > 0. \hfill \cr}  \right.  \cr  &  \cr} \)

Vì y = -2k > 0 nên k < 0.

Ta có :

\(\left\{ \matrix{  {k^2} + 4{k^2} + 9{k^2} = 14 \hfill \cr  k < 0 \hfill \cr}  \right. \Rightarrow k =  - 1.\)

Vậy \(\overrightarrow b  = ( - 1;2; - 3).\)

LG c

Vectơ\(\overrightarrow u \) có độ dài bằng 2,tạo với vec tơ \(\overrightarrow a (1;1;1)\) góc 300, tạo với vectơ \(\overrightarrow b (1;1;0)\) góc 450. Tìm tọa độ của vec tơ \(\overrightarrow u .\)

Lời giải chi tiết:

\(\overrightarrow u  = \left( {{{2 - \sqrt 2 } \over 2};{{2 + \sqrt 2 } \over 2};1} \right)\) hoặc \(\left( {{{2 + \sqrt 2 } \over 2};{{2 - \sqrt 2 } \over 2};1} \right)\).

LG d

Vectơ \(\overrightarrow u \) vuông góc với hai vec tơ \(\overrightarrow a (1;1;1)\) và \(\overrightarrow b (1; - 1;3),\overrightarrow u \) tạo với trục Oz một góc tù và \(\left| {\overrightarrow u } \right| = 3.\) Tìm tọa độ của vec tơ \(\overrightarrow u .\)

Lời giải chi tiết:

Giả sử \(\overrightarrow u  = (x;y;z)\) là vec tơ phải tìm . Từ giả thiết của bài toán ta có hệ :

\(\left\{ \matrix{  \overrightarrow u .\overrightarrow a  = 0 \hfill \cr  \overrightarrow u .\overrightarrow b  = 0 \hfill \cr  \left| {\overrightarrow u } \right| = 3 \hfill \cr  \overrightarrow u .\overrightarrow k  < 0 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x + y + z = 0 \hfill \cr  x - y + 3z = 0 \hfill \cr  {x^2} + {y^2} + {z^2} = 9 \hfill \cr  z < 0. \hfill \cr}  \right.\)

Từ hai phương trình đầu của hệ rút ra x = -2z, y = z, thế vào phương trình thứ ba của hệ, ta có : \(6{z^2} = 9\).

Vì z < 0 nên \(z =  - \sqrt {{3 \over 2}} \), suy ra \(x = 2\sqrt {{3 \over 2}} ,\,\,y =  - \sqrt {{3 \over 2}} \)

Vectơ \(\overrightarrow u \) phải tìm là \(\overrightarrow u  = \left( {2\sqrt {{3 \over 2}} ; - \sqrt {{3 \over 2}} ; - \sqrt {{3 \over 2}} } \right).\)

dapandethi.vn