Lựa chọn câu để xem lời giải nhanh hơn

Xác định trục đối xứng, tọa độ đỉnh, giao điểm với trục tung và trục hoành của parabol.

LG a

 \(y = 2{x^2} - x - 2\);

Phương pháp giải:

Đồ thị của hàm số bậc hai \(y = a{x^2} + bx + c\) là một parabol có đỉnh là điểm \(I\left( { - \dfrac{b}{{2a}};\dfrac{{ - \Delta }}{{4a}}} \right)\), có trục đối xứng là \(x =  - \dfrac{b}{{2a}}\).

Lời giải chi tiết:

Ta có \(a = 2;b =  - 1;c =  - 2\).Ta có \(\Delta  = {( - 1)^2} - 4.2.( - 2) = 17\).

Trục đối xứng là đường thẳng \(x = \dfrac{1}{4}\); đỉnh \(I(\dfrac{1}{4}; - \dfrac{{17}}{8})\); giao với trục tung tại điểm \((0;-2)\).

Để tìm giao điểm với trục hoành ta giải phương trình

\(2{x^2} - x - 2 = 0 \Leftrightarrow {x_{1,2}} = \dfrac{{1 \pm \sqrt {17} }}{4}\).

Vậy các giao điểm với trục hoành là \((\dfrac{{1 + \sqrt {17} }}{4};0)\)và\((\dfrac{{1 - \sqrt {17} }}{4};0)\).

LG b

 \(y =  - 2{x^2} - x + 2\);

Phương pháp giải:

Đồ thị của hàm số bậc hai \(y = a{x^2} + bx + c\) là một parabol có đỉnh là điểm \(I\left( { - \dfrac{b}{{2a}};\dfrac{{ - \Delta }}{{4a}}} \right)\), có trục đối xứng là \(x =  - \dfrac{b}{{2a}}\).

Lời giải chi tiết:

 Ta có \(a =  - 2;b =  - 1;c = 2\).Ta có \(\Delta  = {( - 1)^2} - 4.2.( - 2) = 17\).

Trục đối xứng là đường thẳng \(x =  - \dfrac{1}{4}\); đỉnh \(I( - \dfrac{1}{4}; - \dfrac{{17}}{8})\); giao với trục tung tại điểm \((0;-2)\).

Để tìm giao điểm với trục hoành ta giải phương trình

\( - 2{x^2} - x + 2 = 0 \Leftrightarrow \)

\({x_{1,2}} = \dfrac{{ - 1 \pm \sqrt {17} }}{4}\).

Vậy các giao điểm với trục hoành là

\(\left( {\dfrac{{ - 1 + \sqrt {17} }}{4};0} \right)\) và \(\left( {\dfrac{{ - 1 - \sqrt {17} }}{4};0} \right)\).

dapandethi.vn