Đề bài

Trong mặt phẳng tọa độ Oxy, xét các điểm M có tọa độ: \(\left( {3, - 4} \right),\left( {4, - 3} \right),\left( { - 12, - 9} \right),\left( { - 1,1} \right)\).

Hãy tính các giá trị lượng giác của các góc lượng giác \(\left( {Ox;OM} \right)\).

Lời giải chi tiết

M có tọa dộ \(\left( {x;y} \right) \ne \left( {0;0} \right)\), đặt sđ \(\left( {Ox,OM} \right) = \alpha \) thì

\(\cos \alpha  = \dfrac{x}{{\sqrt {{x^2} + {y^2}} }}\); \(\sin \alpha  = \dfrac{y}{{\sqrt {{x^2} + {y^2}} }}\). Vậy

 

\(\cos \alpha \)

\(\sin \alpha \)

\(\tan \alpha \)

\(\cot \alpha \)

\(M\left( {3; - 4} \right)\)

\(\dfrac{3}{5}\)

\( - \dfrac{4}{5}\)

\( - \dfrac{4}{3}\)

\( - \dfrac{3}{4}\)

\(M\left( {4; - 3} \right)\)

\(\dfrac{4}{5}\)

\( - \dfrac{3}{5}\)

\( - \dfrac{3}{4}\)

\( - \dfrac{4}{3}\)

\(M\left( { - 12; - 9} \right)\)

\( - \dfrac{4}{5}\)

\( - \dfrac{3}{5}\)

\(\dfrac{3}{4}\)

\(\dfrac{4}{3}\)

\(M\left( { - 1;1} \right)\)

\( - \dfrac{{\sqrt 2 }}{2}\)

\(\dfrac{{\sqrt 2 }}{2}\)

-1

-1

dapandethi.vn