Lựa chọn câu để xem lời giải nhanh hơn

LG a

Trong các góc lượng giác có tia đầu \(Ou\), tia cuối \(Ov\) cho trước, chứng minh rằng, có một góc lượng giác duy nhất \(\left( {Ou,Ov} \right)\)có số đo \(\alpha , - \pi  < \alpha  \le \pi \) và chứng minh rằng \(\left| \alpha  \right|\) là số đo rađian của góc hình học \(uOv\).

 

Lời giải chi tiết:

Nếu một góc lượng giác \(\left( {Ou,Ov} \right)\) có số đo \(\alpha , - \pi  < \alpha  \le \pi \), thì mọi góc lượng giác \(\left( {Ou,Ov} \right)\) khác có số đo \(\alpha  + k2\pi \left( {k \in Z\backslash \left\{ 0 \right\}} \right)\), nhưng dễ thấy \(\alpha  + k2\pi  \notin \left( { - \pi ;\pi } \right]\), với k nguyên khác 0, vậy góc lượng giác đó là duy nhất.

Khi hai tia \(Ou,Ov\) đối nhau thì một góc lượng giác \(\left( {Ou,Ov} \right)\) có số đo là \(\pi \) và \(\pi \) cũng là số đo rađian của góc bẹt uOv. Khi Ou, Ov không đối nhau thì số đo góc hình học uOv là \(\beta \), \(0 \le \beta  < \pi \) và sđ\(\left( {Ou,Ov} \right)\) là \(\beta  + k2\pi \) hoặc \( - \beta  + k2\pi \left( {k \in Z} \right)\) tức là:

sđ \(\left( {Ou,Ov} \right) = \alpha  + k2\pi ;\left| \alpha  \right| = \beta \).

 

LG b

Tìm số đo của góc hình học \(uOv\), biết góc lượng giác \(\left( {Ou,Ov} \right)\) có số đo là:

• \(\dfrac{{9\pi }}{7};\dfrac{{ - 5\pi }}{8};\dfrac{{106\pi }}{9}; - 2003\)

• \({220^0}; - {235^0};{1945^0}; - {2003^0}.\)

 

Lời giải chi tiết:

Số đo góc hình học uOv cần tìm theo thứ tự là

• \(\dfrac{{5\pi }}{7};\dfrac{{5\pi }}{8};\dfrac{{2\pi }}{9}; \approx 1,336\) (do \(2003 \approx 319.2\pi  - 1,336\) và \( - \pi  <  - 1,336 \le \pi \));

• \({140^0};{125^{0;}}{145^0};{157^0}.\)

dapandethi.vn