Lựa chọn câu để xem lời giải nhanh hơn

Cho phương trình \(\left( {m\sqrt 5 } \right){x^2} - 3mx + m + 1 = 0.\) Với các giá trị nào của m thì

 

LG a

 Phương trình đã cho có nghiệm ?

 

Lời giải chi tiết:

Với \(m = \sqrt 5 \) phương trình trở thành

\( - 3\sqrt 5 x + \sqrt 5  + 1 = 0,\)

Có nghiệm \(x = \dfrac{{1 + \sqrt 5 }}{{3\sqrt 5 }}\)

Với \(m \ne \sqrt 5 \) phương trình có nghiệm khi và chỉ khi

\(\Delta  = 9{m^2} - 4\left( {m + 1} \right)\left( {m - \sqrt 5 } \right) \ge 0\)

\(\Leftrightarrow 5{m^2} - 4\left( {1 - \sqrt 5 } \right)m + 4\sqrt 5  \ge 0,\) bất phương trình này nghiệm đúng với mọi m (vì \(\Delta {'_m} = 4{\left( {1 - \sqrt 5 } \right)^2} - 20\sqrt 5  < 0\) ).

Vậy phương trình đã cho có nghiệm với mọi m.

 

LG b

Phương trình đã cho có hai nghiệm trái dấu nhau.

 

Lời giải chi tiết:

\(m \in \left( { - 1;\sqrt 5 } \right)\).

dapandethi.vn