Lựa chọn câu để xem lời giải nhanh hơn

Biết \(\sin \alpha  = {3 \over 4}\) và \({\pi  \over 2} < \alpha  < \pi \). Tính

LG a

\(A = {{2\tan \alpha  - 3\cot \alpha } \over {\cos \alpha  + tan\alpha }}\)

Lời giải chi tiết:

\(\displaystyle {\pi  \over 2} < \alpha  < \pi  =  > \cos \alpha  < 0\)

Ta có: \(\displaystyle {\sin ^2}\alpha  + {\cos ^2}\alpha  = 1 \) \(\displaystyle \Rightarrow {\cos ^2}\alpha  = 1 - {\sin ^2}\alpha \)

\(\displaystyle \Rightarrow \cos \alpha  =  - \sqrt {1 - {{\sin }^2}\alpha }  \) \(\displaystyle =  - \sqrt {1 - {9 \over {16}}}  =  - {{\sqrt 7 } \over 4}\)

\(\displaystyle \tan \alpha  = {{\sin \alpha } \over {\cos \alpha }} =  - {3 \over {\sqrt 7 }},\) \(\displaystyle \cot \alpha  =  - {{\sqrt 7 } \over 3}\)

Vậy \(\displaystyle A = \dfrac{{2.\left( { - \dfrac{3}{{\sqrt 7 }}} \right) - 3.\left( { - \dfrac{{\sqrt 7 }}{3}} \right)}}{{ - \dfrac{{\sqrt 7 }}{4} - \dfrac{3}{{\sqrt 7 }}}}\) \(\displaystyle = {{ - {6 \over {\sqrt 7 }} + \sqrt 7 } \over { - {{\sqrt 7 } \over 4} - {3 \over {\sqrt 7 }}}} =  - {4 \over {19}}\)

LG b

\(B = {{{\rm{co}}{{\rm{s}}^2}\alpha  + {{\cot }^2}\alpha } \over {\tan \alpha  - \cot \alpha }}\)

Lời giải chi tiết:

\(\displaystyle B = \frac{{{{\left( { - \frac{{\sqrt 7 }}{4}} \right)}^2} + {{\left( { - \frac{{\sqrt 7 }}{3}} \right)}^2}}}{{ - \frac{3}{{\sqrt 7 }} - \left( { - \frac{{\sqrt 7 }}{3}} \right)}}\) \(\displaystyle = {{{7 \over {16}} + {7 \over 9}} \over { - {3 \over {\sqrt 7 }} + {{\sqrt 7 } \over {3 }}}} = {{{{7 \times 25} \over {144}}} \over { - {2 \over {3\sqrt 7 }}}} =  - {{175\sqrt 7 } \over {96}}\)

dapandethi.vn