Đề bài

Diện tích hình chữ nhật thay đổi như thế nào nếu:

a) Chiều dài tăng \(2\) lần, chiều rộng không đổi?

b) Chiều dài và chiều rộng tăng \(3\) lần?

c) Chiều dài tăng \(4\) lần, chiều rộng giảm \(4\) lần?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng:

Công thức tính diện tích hình chữ nhật là \(S = a.b\).

Lời giải chi tiết

Giả sử hình chữ nhật ban đầu có chiều dài là \(a\), chiều rộng là \(b\).

Diện tích ban đầu của hình chữ nhật là: \(S = a.b\).

a) Nếu chiều dài tăng \(2\) lần, chiều rộng không đổi thì kích thước chiều dài và chiều rộng của hình chữ nhật mới là \(a' = 2a, b' = b\).

Diện tích hình chữ nhật mới là: \(S'=a'.b' = 2a.b \)\(= 2ab = 2S\).

Vậy diện tích hình chữ nhật mới gấp \(2\) lần diện tích hình chữ nhật ban đầu.

b) Nếu chiều dài và chiều rộng tăng \(3\) lần thì kích thước chiều dài và chiều rộng của hình chữ nhật mới là \(a' = 3a, b'= 3b\).

Diện tích hình chữ nhật mới là: \(S' =a'.b'= 3a.3b \)\(= 9ab = 9S\).

Vậy diện tích hình chữ nhật mới gấp \(9\) lần diện tích hình chữ nhật ban đầu.

c) Nếu chiều dài tăng \(4\) lần, chiều rộng giảm \(4\) lần thì kích thước chiều dài và chiều rộng của hình chữ nhật mới là \(a' = 4a,\) \(b'= \dfrac{b}{4}\).

Diện tích hình chữ nhật mới là \(S' =a'.b'\)\(= 4a.\dfrac{b}{4}= ab = S.\) 

Vậy diện tích hình chữ nhật không đổi.