Lựa chọn câu để xem lời giải nhanh hơn

LG a

Tìm điểm A sao cho đường thẳng \(y = 2mx + 1 – m\) luôn đi qua \(A\), dù m lấy bất cứ giá trị nào.

Lời giải chi tiết:

 Giả sử điểm A cần tìm có tọa độ \((x_0 ; y_0)\). Khi đó, vì \(A\) thuộc đường thẳng \(y = 2mx + 1 – m\) với mọi \(m\) nên đẳng thức

\({y_0} = 2m{x_0} + 1 - m,\) hay \(\left( {2{x_0} - 1} \right)m - {y_0} = 0\)

Xảy ra với mọi \(m\).

Điều đó chỉ có thể xảy ra khi ta có đồng thời \(2{x_0} - 1 = 0\) và \(1 - {y_0} = 0,\) nghĩa là \({x_0} = {1 \over 2}\) và \({y_0} = 1.\)

Vậy tọa độ của A là \(\left( {{1 \over 2};1} \right)\)

Ngược lại, dễ thấy giá trị của hàm số \(y = 2mx + 1 – m\) tại \(x = {1 \over 2}\) luôn bằng 1 với mọi \(m\), chứng tỏ đồ thị của nó luôn đi qua điểm \(A\left( {{1 \over 2};1} \right)\) với mọi \(m\).

LG b

Tìm điểm B sao cho đường thẳng \(y = mx – 3 – x\) luôn đi qua \(B\), dù m lấy bất cứ giá trị nào.

Lời giải chi tiết:

Gọi \(B\left( {{x_0};{y_0}} \right)\) là điểm cố định của đồ thị hàm số.

Khi đó

\(\begin{array}{l}{y_0} = m{x_0} - 3 - {x_0},\forall m\\ \Leftrightarrow m{x_0} - 3 - {x_0} - {y_0} = 0,\forall m\\ \Leftrightarrow \left\{ \begin{array}{l}{x_0} = 0\\ - 3 - {x_0} - {y_0} = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x_0} = 0\\{y_0} =  - 3\end{array} \right.\\ \Rightarrow B\left( {0; - 3} \right)\end{array}\)

dapandethi.vn