Lựa chọn câu để xem lời giải nhanh hơn

Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của nó.

LG a

\(\forall x \in R:x.1 = x;\)

Phương pháp giải:

Phủ định \(\overline P \) của mệnh đề \(P\) là đúng khi \(P\) sai và là sai khi \(P\) đúng.

Mệnh đề phủ định của mệnh đề \(\forall x \in X,P\left( x \right)\) là \(\exists x \in X,\overline {P\left( x \right)} \)

Lời giải chi tiết:

\(\exists x \in R:x.1 \ne x\). Mệnh đề này sai.

Vì với mọi x thì x.1=x.

LG b

\(\forall x \in R:x.x = 1;\)

Phương pháp giải:

Phủ định \(\overline P \) của mệnh đề \(P\) là đúng khi \(P\) sai và là sai khi \(P\) đúng.

Mệnh đề phủ định của mệnh đề \(\forall x \in X,P\left( x \right)\) là \(\exists x \in X,\overline {P\left( x \right)} \)

Lời giải chi tiết:

\(\exists x \in R:x.x \ne 1\). Mệnh đề đúng.

Chẳng hạn x=2 thì 2.2=4\(\ne\)1.

LG c

 \(\forall n \in Z:n \le {n^2}\)

Phương pháp giải:

Phủ định \(\overline P \) của mệnh đề \(P\) là đúng khi \(P\) sai và là sai khi \(P\) đúng.

Mệnh đề phủ định của mệnh đề \(\forall x \in X,P\left( x \right)\) là \(\exists x \in X,\overline {P\left( x \right)} \)

Lời giải chi tiết:

\(\exists n \in Z:n > {n^2}\). 

Nhận xét: \(n > {n^2} \leftrightarrow n^2-n < 0 \leftrightarrow n(n-1) < 0 \leftrightarrow 0< n< 1\) 

Mà \(n \) thuộc Z nên không tồn tại \( n\) sao cho \( 0< n< 1\) 

Vậy mệnh đề \(\overline P \) sai.

 dapandethi.vn