Đề bài

Áp dụng các tính chất trên đây của phép cộng các phân thức để làm phép tính sau:

\(\dfrac{{2x}}{{{x^2} + 4x + 4}} + \dfrac{{x + 1}}{{x + 2}} + \dfrac{{2 - x}}{{{x^2} + 4x + 4}}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Phép cộng các phân thức cũng có các tính chất sau:

- Giao hoán: \( \dfrac{A}{B}+\dfrac{C}{D}=\dfrac{C}{D}+\dfrac{A}{B}\)

- Kết hợp: \(\left( {\dfrac{A}{B} + \dfrac{C}{D}} \right) + \dfrac{E}{F} = \dfrac{A}{B} + \left( {\dfrac{C}{D} + \dfrac{E}{F}} \right)\)

Lời giải chi tiết

\(\eqalign{& {{2x} \over {{x^2} + 4x + 4}} + {{x + 1} \over {x + 2}} + {{2 - x} \over {{x^2} + 4x + 4}}  \cr &  = \left( {{{2x} \over {{x^2} + 4x + 4}} + {{2 - x} \over {{x^2} + 4x + 4}}} \right) + {{x + 1} \over {x + 2}}  \cr &  = \frac{{2x + 2 - x}}{{{x^2} + 4x + {4}}} + \frac{{x + 1}}{{x + 2}}  \cr &  = {{x + 2} \over {{{\left( {x + 2} \right)}^2}}} + {{x + 1} \over {x + 2}}\cr& = {1 \over {x + 2}} + {{x + 1} \over {x + 2}}  \cr &  = {{1 + x + 1} \over {x + 2}} = {{x + 2} \over {x + 2}} = 1 \cr} \)

dapandethi.vn