1. Lập phương của một tổng
Lập phương của tổng hai biểu thức bằng tổng của lập phương biểu thức thứ nhất, ba lần tích của bình phương biểu thức thứ nhất và biểu thức thứ hai, ba lần tích của biểu thức thứ nhất và bình phương biểu thức thứ hai và lập phương biểu thức thứ hai.
\({\left( {A + B} \right)^3} = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\)
2. Lập phương của một hiệu
Lập phương của hiệu hai biểu thức bằng lập phương biểu thức thứ nhất trừ đi ba lần tích của bình phương biểu thức thứ nhất và biểu thức thứ hai, sau đó cộng ba lần tích của biểu thức thứ nhất và bình phương biểu thức thứ hai rồi trừ đi lập phương biểu thức thứ hai.
\({\left( {A - B} \right)^3} = {A^3} - 3{A^2}B + 3A{B^2} - {B^3}\)
Các dạng toán cơ bản
Dạng 1: Rút gọn biểu thức
Phương pháp:
Sử dụng các hằng đẳng thức và phép nhân đa thức để biến đổi.
Ví dụ: Rút gọn và tính giá trị biểu thức \(A={x^3} - {x^2}y + \dfrac{1}{3}x{y^2} - \dfrac{1}{{27}}{y^3}\) tại \(x = 2\) và \(y = 3\)
Ta có:
\(A={{x}^{3}}-{{x}^{2}}y+\dfrac{1}{3}x{{y}^{2}}-\dfrac{1}{27}{{y}^{3}}\)\(={{x}^{3}}-3.{{x}^{2}}.\dfrac{1}{3}y+3.x.{{\left( \dfrac{1}{3}y \right)}^{2}}-{{\left( \dfrac{1}{3}y \right)}^{3}}\)\(={{\left( x-\dfrac{1}{3}y \right)}^{3}}\)
Tại \(x=2,y=3\) ta có: \(A={{\left( x-\dfrac{1}{3}y \right)}^{3}}\)\(={{\left( 2-\dfrac{1}{3}.3 \right)}^{3}}={{1}^{3}}=1\)
Dạng 2: Tìm \({\bf{x}}\)
Phương pháp:
Sử dụng các hằng đẳng thức và phép nhân đa thức để biến đổi để đưa về dạng tìm \(x\) thường gặp
Ví dụ: Tìm x biết \({x^3} + 6{x^2} + 12x + 8 = 27\)
Ta có:
\(\begin{array}{l}
{x^3} + 6{x^2} + 12x + 8 = 27\\
\Rightarrow {x^3} + 3.{x^2}.2 + 3.x{.2^2} + {2^3} = 27\\
\Rightarrow {\left( {x + 2} \right)^3} = 27\\
\Rightarrow x + 2 = 3\\
\Rightarrow x = 1
\end{array}\)
Vậy \(x=1\).
dapandethi.vn