Đề bài
Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Phương pháp giải - Xem chi tiết
Sử dụng:
Tứ giác có hai cạnh đối song song là hình thang
Hình thang có hai góc ở đáy bằng nhau là hình thang cân.
Lời giải chi tiết
\(\Delta ABC\) cân có AM là đường trung tuyến (gt) \( \Rightarrow AM\) cũng là đường trung trực của BC.
N thuộc AM \( \Rightarrow NB = NC\) hay \(\Delta NBC\) cân tại N \( \Rightarrow \widehat {{B_1}} = \widehat {{C_1}}\)
Xét \(\Delta BEC\) và \(\Delta CDB\) có
\(\widehat B = \widehat C\) (gt)
BC chung
\(\widehat {{C_1}} = \widehat {{B_1}}(cmt)\)
\(\Rightarrow \Delta BEC = \Delta CDB(g.c.g)\)
\( \Rightarrow EB = DC\)
Mà \(AB = AC(gt) \) \(\Rightarrow AB - EB = AC - DC\)
Hay AE = AD.
Từ đó \(\Delta AED\) cân tại A \( \Rightarrow \widehat {AED} = \widehat {ADE} =\dfrac {{{{180}^ \circ } - \widehat A} }{2}\)
Với \(\Delta ABC\) có: \(\widehat {ABC} = \widehat {ACB} = \dfrac{{{{180}^ \circ } - \widehat A} }{2} \) \(\Rightarrow \widehat {AED} = \widehat {ABC}\)
Do đó \(ED// BC\) (cặp góc đồng vị bằng nhau) nên BEDC là hình thang.
Lại có \(\widehat B = \widehat C\) (gt).
Vậy BEDC là hình thang cân.
dapandethi.vn