Lựa chọn câu để xem lời giải nhanh hơn

Tính

LG a

\(\cos \dfrac{\pi }{9} + \cos \dfrac{{2\pi }}{9} +  \ldots  + \cos \dfrac{{8\pi }}{9};\)

Lời giải chi tiết:

\(\cos \dfrac{\pi }{9} + \cos \dfrac{{2\pi }}{9} +  \ldots  + \cos \dfrac{{8\pi }}{9} = 0\), do \(\cos \left( {\pi  - \alpha } \right) =  - \cos \alpha .\)

LG b

\({\sin ^2}\dfrac{\pi }{3} + {\sin ^2}\dfrac{\pi }{6} + {\sin ^2}\dfrac{\pi }{9} + {\sin ^2}\dfrac{{2\pi }}{9} + {\sin ^2}\dfrac{{5\pi }}{{18}} + {\sin ^2}\dfrac{{7\pi }}{{18}}\);

Lời giải chi tiết:

Do \(\sin \dfrac{\pi }{3} = \sin \left( {\dfrac{\pi }{2} - \dfrac{\pi }{6}} \right) = \cos \dfrac{\pi }{6}\) nên \({\sin ^2}\dfrac{\pi }{3} + {\sin ^2}\dfrac{\pi }{6} = 1.\)  

Do \(\sin \dfrac{{7\pi }}{{18}} = \sin \left( {\dfrac{\pi }{2} - \dfrac{\pi }{9}} \right) = \cos \dfrac{\pi }{9}\) nên \({\sin ^2}\dfrac{{7\pi }}{{18}} + {\sin ^2}\dfrac{\pi }{9} = 1\).

Do \(\sin \dfrac{{5\pi }}{{18}} = \sin \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right) = \cos \dfrac{{2\pi }}{9}\) nên \({\sin ^2}\dfrac{{2\pi }}{9} + {\sin ^2}\dfrac{{5\pi }}{{18}} = 1\).

Vậy \({\sin ^2}\dfrac{\pi }{3} + {\sin ^2}\dfrac{\pi }{6} + {\sin ^2}\dfrac{\pi }{9} + {\sin ^2}\dfrac{{2\pi }}{9} + {\sin ^2}\dfrac{{5\pi }}{{18}} + {\sin ^2}\dfrac{{7\pi }}{{18}} = 3\)

LG c

\({\cos ^2}\dfrac{\pi }{3} + {\cos ^2}\dfrac{{5\pi }}{6} + {\cos ^2}\dfrac{\pi }{9} + {\cos ^2}\dfrac{{11\pi }}{{18}} + {\cos ^2}\dfrac{{13\pi }}{{18}} + {\cos ^2}\dfrac{{2\pi }}{9}\);

Lời giải chi tiết:

 Do \(\cos \left( {\dfrac{{5\pi }}{6}} \right) = \cos \left( {\dfrac{\pi }{2} + \dfrac{\pi }{3}} \right) =  - \sin \dfrac{\pi }{3}\), nên \({\cos ^2}\dfrac{\pi }{3} + {\cos ^2}\dfrac{{5\pi }}{6} = 1\).

Do \(\cos \dfrac{{11\pi }}{{18}} = \cos \left( {\dfrac{\pi }{2} + \dfrac{\pi }{9}} \right) =  - \sin \dfrac{\pi }{9}\), nên \({\cos ^2}\dfrac{\pi }{9} + {\cos ^2}\dfrac{{11\pi }}{{18}} = 1\)

Do \(\cos \dfrac{{13\pi }}{{18}} = \cos \left( {\dfrac{\pi }{2} + \dfrac{{2\pi }}{9}} \right) =  - \sin \dfrac{{2\pi }}{9}\), nên \({\cos ^2}\dfrac{{13\pi }}{{18}} + {\cos ^2}\dfrac{{2\pi }}{9} = 1\)

Vậy \({\cos ^2}\dfrac{\pi }{3} + {\cos ^2}\dfrac{{5\pi }}{6} + {\cos ^2}\dfrac{\pi }{9} + {\cos ^2}\dfrac{{11\pi }}{{18}} + {\cos ^2}\dfrac{{13\pi }}{{18}} + {\cos ^2}\dfrac{{2\pi }}{9} = 3\)

LG d

\(\cos \dfrac{\pi }{5} + \cos \dfrac{{2\pi }}{5} +  \ldots  + \cos \dfrac{{9\pi }}{5};\)

Lời giải chi tiết:

Do \(\cos \dfrac{{6\pi }}{5} = \cos \left( {\pi  + \dfrac{\pi }{5}} \right) =  - \cos \dfrac{\pi }{5};\) \(\cos \dfrac{{7\pi }}{5} =  - \cos \dfrac{{2\pi }}{5};\cos \dfrac{{8\pi }}{5} =  - \cos \dfrac{{3\pi }}{5};\) \(\cos \dfrac{{9\pi }}{5} =  - \cos \dfrac{{4\pi }}{5};\cos \pi  =  - 1\) nên \(\cos \dfrac{\pi }{5} + \cos \dfrac{{2\pi }}{5} +  \ldots  + \cos \dfrac{{9\pi }}{5} =  - 1\)

LG e

\(\sin \dfrac{\pi }{5} + \sin \dfrac{{2\pi }}{5} +  \ldots  + \sin \dfrac{{9\pi }}{5}\)

Lời giải chi tiết:

Tương tự đối với sin, nhưng ở đây \(\sin \pi  = 0\), ta có :

\(\sin \dfrac{\pi }{5} + \sin \dfrac{{2\pi }}{5} +  \ldots  + \sin \dfrac{{9\pi }}{5} = 0.\)

(Chú ý: Ta cũng có thể xét thập giác đều có các đỉnh là \({A_k}\) là các điểm trên đường tròn lượng giác, xác định bởi các số \(\dfrac{{k\pi }}{5}\) (k = 1; 2; 3; 4; ....; 9; 10) và nhận xét rằng \(\overrightarrow {O{A_1}}  + \overrightarrow {O{A_2}}  +  \ldots \overrightarrow {O{A_{10}}}  = \overrightarrow 0 \))

dapandethi.vn