Chứng minh rằng với mọi \(\alpha \) ta có:
LG a
\(\sin \left( {\dfrac{{5\pi }}{4} + \alpha } \right) = - \sin \left( {\dfrac{{3\pi }}{4} - \alpha } \right)\);
Lời giải chi tiết:
\(\begin{array}{l}\sin \left( {\dfrac{{5\pi }}{4} + \alpha } \right) = \sin \left( {2\pi - \dfrac{{3\pi }}{4} + \alpha } \right)\\ = \sin \left( { - \dfrac{{3\pi }}{4} + \alpha } \right) = - \sin \left( {\dfrac{{3\pi }}{4} - \alpha } \right)\end{array}\)
LG b
\(\cos \left( {\alpha - \dfrac{{2\pi }}{3}} \right) = - \cos \left( {\dfrac{\pi }{3} + \alpha } \right)\);
Lời giải chi tiết:
\(\begin{array}{l}\cos \left( {\alpha - \dfrac{{2\pi }}{3}} \right) = - \cos \left( {\alpha - \dfrac{{2\pi }}{3} + \pi } \right)\\ = - \cos \left( {\alpha + \dfrac{\pi }{3}} \right)\end{array}\)
LG c
\(\cos \left( {\alpha - \dfrac{{2\pi }}{3}} \right) = \cos \left( {\dfrac{{4\pi }}{3} + \alpha } \right).\)
Lời giải chi tiết:
\(\begin{array}{l}\cos \left( {\alpha - \dfrac{{2\pi }}{3}} \right) = \cos \left( {\alpha + \dfrac{{4\pi }}{3} - 2\pi } \right)\\ = \cos \left( {\alpha + \dfrac{{4\pi }}{3}} \right)\end{array}\)
dapandethi.vn