Lựa chọn câu để xem lời giải nhanh hơn

Giải các bất phương trình sau :

 

LG a

\(\sqrt { - {x^2} - 8{ {x}} - 12}  > x + 4\)

 

Lời giải chi tiết:

 \( - 6 \le x \le  - 4 + \sqrt 2 .\)

Hướng dẫn. Bất phương trình tương đươngvới hệ :

\(\left\{ {\matrix{{ - {x^2} - 8x - 12 \ge 0} \cr {x + 4 < 0} \cr} } \right.\)

hoặc \(\left\{ {\matrix{{ - {x^2} - 8x - 12 > {{\left( {x + 4} \right)}^2}} \cr {x + 4 \ge 0.} \cr} } \right.\)

 

LG b

\(\sqrt {5{{ {x}}^2} + 61{ {x}}}  < 4{ {x}} + 2\)

 

Lời giải chi tiết:

\(x \in \left[ {0;\dfrac{1}{{11}}} \right) \cup \left( {4; + \infty } \right).\)

Hướng dẫn. Bất phương trình tương đương với :

\(\left\{ {\begin{array}{*{20}{c}}{4{ {x}} + 2 > 0}\\{5{{ {x}}^2} + 61{ {x}} \ge 0}\\{5{{ {x}}^2} + 61{ {x}} < {{\left( {4{ {x}} + 2} \right)}^2}.}\end{array}} \right.\)

 

LG c

\(\begin{array}{l}\dfrac{{\sqrt {2 - x}  + 4{ {x}} - 3}}{x} \ge 2\\\end{array}\)

 

Lời giải chi tiết:

\(x \in \left( { - \infty ;0} \right) \cup \left[ {1;2} \right].\)

Hướng dẫn. Bất phương trình tương đương với :

\(\left\{ {\begin{array}{*{20}{c}}{x \ne 0}\\{x\left( {\sqrt {2 - x}  + 2{ {x}} - 3} \right) \ge 0.}\end{array}} \right.\)

 

LG d

\(\dfrac{{3\left( {4{{ {x}}^2} - 9} \right)}}{{\sqrt {3{{ {x}}^2} - 3} }} \le 2{ {x}} + 3\)

 

Lời giải chi tiết:

\(x \in \left[ { - \dfrac{3}{2}; - 1} \right) \cup \left( {1;\dfrac{3}{2}} \right].\)

Hướng dẫn. Bất phương trình tương đương với :

\(\left\{ {\begin{array}{*{20}{c}}{3{{ {x}}^2} - 3 > 0}\\{\left( {2{ {x}} + 3} \right)\left[ {3\left( {2{ {x}} - 3} \right) - \sqrt {3{{ {x}}^2} - 3} } \right] \le 0.}\end{array}} \right.\)

dapandethi.vn