Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau :

 

LG a

\(2{{ {x}}^2} - 3 - 5\sqrt {2{{ {x}}^2} + 3}  = 0\)

 

Lời giải chi tiết:

\({x_1} = \sqrt {\dfrac{{33}}{2}} ,{x_2} =  - \sqrt {\dfrac{{33}}{2}} .\).

Hướng dẫn. Phương trình được biến đổi thành

\(2{{ {x}}^2} + 3 - 5\sqrt {2{{ {x}}^2} + 3}  - 6 = 0\)                (*)

Đặt \(t = \sqrt {2{{ {x}}^2} + 3}  \ge 0.\) Khi đó (*) trở thành \({t^2} - 5t - 6 = 0\) và có hai nghiệm \({t_1} =  - 1,{t_2} = 6.\) Do \(t ≥ 0\), nên chỉ lấy \(t = 6\).

 

LG b

\(2{{ {x}}^2} + 3{ {x}} + 3 = 5\sqrt {2{{ {x}}^2} + 3{ {x}} + 9} \)

 

Lời giải chi tiết:

\(x = 3;x =  - \dfrac{9}{2}.\)

Hướng dẫn. Đặt \(t = \sqrt {2{{ {x}}^2} + 3{ {x}} + 9} .\)

 

LG c

 \(9 - \sqrt {81 - 7{{ {x}}^3}}  = \dfrac{{{{ {x}}^3}}}{2}\)

 

Lời giải chi tiết:

\(x = 0 ; x = 2\). Hướng dẫn. Đặt \(t = \sqrt {81 - 7{{ {x}}^3}} \)

 

LG d

\({x^2} + 3 - \sqrt {2{{ {x}}^2 } - 3{ {x}} + 2}  = \dfrac{3}{2}\left( {{ {x}} + 1} \right).\)

 

Lời giải chi tiết:

\(x = 1;x = \dfrac{1}{2}.\) Hướng dẫn. Đặt \(t = \sqrt {2{{ {x}}^2} - 3{ {x}} + 2} .\)

dapandethi.vn