Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau :

 

LG a

 \(\left| {5 + {x}} \right| + \left| {x - 3} \right| = 8\)

 

Lời giải chi tiết:

 Dựa vào tính chất \(\left| a \right| + \left| b \right| = \left| {a - b} \right| \Leftrightarrow ab \le 0,\)

và để ý rằng \(\left( {5 + x} \right) - \left( {x - 3} \right) = 8\) ta có

\(\begin{array}{l}\left| {5 + x} \right| +  \left| {x - 3} \right| = 8\\ \Leftrightarrow \left( {5 + x} \right)\left( {x - 3} \right) \le 0\\ \Leftrightarrow  - 5 \le x \le 3.\end{array}\)

Chú ý. Học sinh có thể giải bằng cách chia thành các khoảng để phá dấu giá trị tuyệt đối nhưng lời giải sẽ dài hơn.

 

LG b

\(\left| {{x^2} - 5{x} + 6} \right| = {x^2} - 5{x} + 6\)

 

Lời giải chi tiết:

Dựa vào tính chất \(\left| a \right| = a \Leftrightarrow a \ge 0,\) ta có

\(\eqalign{& \left| {{x^2} - 5x + 6} \right| = {x^2} - 5x + 6 \cr & \Leftrightarrow {x^2} - 5x + 6 \ge 0 \cr} \)

\(\Leftrightarrow x \le 2\) hoặc \(x \ge 3.\)

 

LG c

\(\left| {2{x} - 1} \right| = x + 2\)

 

Lời giải chi tiết:

Ta có \(\left| {2x - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{2x - 1\,\,khi\,\,x \ge \dfrac{1}{2}}\\{1 - 2x\,\,khi\,\,x < \dfrac{1}{2}.}\end{array}} \right.\)

Nếu \(x \ge \dfrac{1}{2}\) thì \(\left| {2x - 1} \right| = x + 2 \Leftrightarrow 2x - 1 = x + 2 \Leftrightarrow x = 3\) (thỏa mãn điều kiện \(x \ge \dfrac{1}{2}\)).

Nếu \(x < \dfrac{1}{2}\) thì \(\left| {2x - 1} \right| = x + 2 \Leftrightarrow 1 - 2x = x + 2 \Leftrightarrow x =  - \dfrac{1}{3}\) (thỏa mãn điều kiện \(x < \dfrac{1}{2}\)).

Vậy tập nghiệm của phương trình là \(S = \left\{ { - \dfrac{1}{3};3} \right\}\)

 

LG d

 \(\left| {x + 2} \right| + \left| {x - 1} \right| = 5\)

 

Lời giải chi tiết:

Tập nghiệm \(S = \left\{ { - 3;2} \right\}.\)

dapandethi.vn