Đề bài

Cho lục giác \(ABCDEF.\) Chứng minh rằng đường chéo \(BF\) chia \(AD\) thành hai đoạn thẳng theo tỉ số \(1: 3.\)

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Nếu \(C\) là một điểm trên cung \(AB\) thì: \(sđ \overparen{AB}=sđ \overparen{AC}+sđ \overparen{CB}.\)

+) Số đo của nửa đường tròn bằng \(180^o.\)

+) Tứ giác có bốn cạnh bằng nhau là hình thoi.

+) Trong hình thoi, hai đường chéo cắt nhau tại trung điểm mỗi đường.

Lời giải chi tiết

Lục giác đều \(ABCDEF\) nội tiếp trong đường tròn \((O)\)

\(\overparen{AB} = \overparen{CB} = \overparen{CD} = \overparen{DE}\)\( = \overparen{EF}\)\( = \overparen{FA} =60^\circ\)

\( \Rightarrow \) \(sđ \overparen{ABCD}\)\( = sđ \overparen{AB} + sđ \overparen{BC} +  sđ \overparen{CD}\)\(=180^\circ\)

Nên \(AD\) là đường kính của đường tròn \((O)\)

Ta có: \(OA = OB = OF = AB = AF = R\)

Nên tứ giác \(ABOF\) là hình thoi

Gọi giao điểm của \(AD\) và \(BF\) là \(H\)

Ta có: \(FB \bot OA\) (tính chất hình thoi)

\( \Rightarrow AH = HO = \displaystyle{{AO} \over 2} = {R \over 2}\)

\(HD = HO + OD = \displaystyle{R \over 2} + R = {\displaystyle{3R} \over 2}\)

Suy ra: \(\displaystyle{{AH} \over {HD}} = {{\displaystyle{R \over 2}} \over {\displaystyle{{3R} \over 2}}} = {1 \over 3}\)

dapandethi.vn