Đề bài
Chứng minh đẳng thức:
\( \displaystyle\sqrt {n + 1} - \sqrt n = {1 \over {\sqrt {n + 1} + \sqrt n }}\) với \(n\) là số tự nhiên.
Phương pháp giải - Xem chi tiết
Áp dụng:
\(\dfrac{A}{{\sqrt B \pm \sqrt C }} = \dfrac{{A(\sqrt B \mp \sqrt C)}}{{B - C}}\) với \(B, C\ge 0; B\ne C\).
Lời giải chi tiết
Ta có:
\( VP=\displaystyle{1 \over {\sqrt {n + 1} + \sqrt n }}\) \( \displaystyle = {{\sqrt {n + 1} - \sqrt n } \over {(\sqrt {n + 1} + \sqrt n )(\sqrt {n + 1} - \sqrt n )}}\)
\( \displaystyle = {{\sqrt {n + 1} - \sqrt n } \over {{{(\sqrt {n + 1})}^2} - {{(\sqrt n )}^2}}}\)
\( \displaystyle = {{\sqrt {n + 1} - \sqrt n } \over {n + 1 - n}} \)\(= \sqrt {n + 1} - \sqrt n=VT \)
(với \(n\) là số tự nhiên)
Vế trái bằng vế phải nên đẳng thức được chứng minh.
dapandethi.vn