Đề bài

Rút gọn

\( P= \dfrac{{x\sqrt x  + y\sqrt y }}{{\sqrt x  + \sqrt y }} - {\left( {\sqrt x  - \sqrt y } \right)^2}\) với \(x \ge 0,\;y \ge 0,\;{x^2} + {y^2} > 0.\)

Phương pháp giải - Xem chi tiết

Sử dụng hằng đẳng thức: \(a^3+b^3=(a+b)(a^2-ab+b^2)\)

Lời giải chi tiết

\( P= \dfrac{{x\sqrt x  + y\sqrt y }}{{\sqrt x  + \sqrt y }} - {\left( {\sqrt x  - \sqrt y } \right)^2}\) 

\( P= \dfrac{{(\sqrt x)^3  + (\sqrt y)^3 }}{{\sqrt x  + \sqrt y }} - {\left( {\sqrt x  - \sqrt y } \right)^2}\)

\(P = \dfrac{{\left( {\sqrt x  + \sqrt y } \right)\left( {x - \sqrt {xy}  + y} \right)}}{{\sqrt x  + \sqrt y }} \)\(- \left( {x - 2\sqrt {xy}  + y} \right)\)

\(P=x-\sqrt{xy} +y-x+2\sqrt{xy}-y\)

\(P=\sqrt{xy}\)

dapandethi.vn