Đề bài
Nghiệm của hệ phương trình \(\left\{ \begin{gathered} 2x - y = 3 \hfill \\ - 5x + 6y = 1 \hfill \\ \end{gathered} \right.\) là cặp số :
\( \left( A \right)\,\left( {1\,\,;\,\, - 1} \right) \)
\( \left( B \right)\,\left( {\sqrt 2 \,\,;\,2\sqrt 2 - 3\,} \right) \)
\( \left( C \right)\,\left( {1\,\,;\,\,1} \right)\,\)
\( \left( D \right)\,\left( {\dfrac{{19}}{7}\,\,;\,\,\dfrac{{17}}{7}} \right)\)
Hãy chọn câu trả lời đúng.
Phương pháp giải - Xem chi tiết
Sử dụng phương pháp cộng đại số:
+) Bước \(1:\) Cộng hay trừ từng vế hai phương trình của hệ phương trình đã cho để được một phương trình mới.
+) Bước \(2:\) Dùng phương trình mới ấy thay thế cho một trong hai phương trình của hệ (và giữ nguyên phương trình kia).
Lời giải chi tiết
Giải hệ phương trình \(\left\{ \begin{gathered} 2x - y = 3 \hfill \\ - 5x + 6y = 1 \hfill \\\end{gathered} \right.\)
\(\Leftrightarrow \left\{ \begin{gathered} 12x -6 y = 18 \hfill \\ - 5x + 6y = 1 \hfill \\\end{gathered} \right.\)\(\Leftrightarrow\left\{ \begin{gathered} 2x - y = 3 \hfill \\ 7x = 19 \hfill \\\end{gathered} \right.\)\(\Leftrightarrow\left\{ \begin{gathered} y =2x- 3 \hfill \\ x = \dfrac{19}{7} \hfill \\\end{gathered} \right.\)\(\Leftrightarrow\left\{ \begin{gathered} y =2.\dfrac{19}{7}- 3 \hfill \\x = \dfrac{19}{7}\\\end{gathered} \right.\)\(\Leftrightarrow\left\{ \begin{gathered} x =\dfrac{19}{7} \hfill \\y = \dfrac{17}{7}\\\end{gathered} \right.\)
Suy ra hệ phương trình \(\left\{ \begin{gathered} 2x - y = 3 \hfill \\ - 5x + 6y = 1 \hfill \\\end{gathered} \right.\) có nghiệm là \(\Leftrightarrow\left\{ \begin{gathered} x =\dfrac{19}{7} \hfill \\y = \dfrac{17}{7}\\\end{gathered} \right.\)
Vậy chọn \(\,\,\left( D \right)\,\left( {\dfrac{{19}}{7}\,\,;\,\,\dfrac{{17}}{7}} \right)\).
dapandethi.vn