Đề bài

Nghiệm của hệ phương trình \(\left\{ \begin{gathered} 2x - y = 3 \hfill \\ - 5x + 6y = 1 \hfill \\ \end{gathered}  \right.\) là cặp số :

\( \left( A \right)\,\left( {1\,\,;\,\, - 1} \right) \) 

\(  \left( B \right)\,\left( {\sqrt 2 \,\,;\,2\sqrt 2  - 3\,} \right) \)

\(  \left( C \right)\,\left( {1\,\,;\,\,1} \right)\,\)

\(  \left( D \right)\,\left( {\dfrac{{19}}{7}\,\,;\,\,\dfrac{{17}}{7}} \right)\)

Hãy chọn câu trả lời đúng.

Phương pháp giải - Xem chi tiết

Sử dụng phương pháp cộng đại số: 

+) Bước \(1:\) Cộng hay trừ từng vế hai phương trình của hệ phương trình đã cho để được một phương trình mới.

+) Bước \(2:\) Dùng phương trình mới ấy thay thế cho một trong hai phương trình của hệ (và giữ nguyên phương trình kia).

Lời giải chi tiết

Giải hệ phương trình \(\left\{ \begin{gathered} 2x - y = 3 \hfill \\ - 5x + 6y = 1 \hfill \\\end{gathered}  \right.\)

\(\Leftrightarrow \left\{ \begin{gathered} 12x -6 y = 18 \hfill \\ - 5x + 6y = 1 \hfill \\\end{gathered}  \right.\)\(\Leftrightarrow\left\{ \begin{gathered} 2x - y = 3 \hfill \\ 7x  = 19 \hfill \\\end{gathered}  \right.\)\(\Leftrightarrow\left\{ \begin{gathered} y =2x- 3 \hfill \\ x  = \dfrac{19}{7} \hfill \\\end{gathered}  \right.\)\(\Leftrightarrow\left\{ \begin{gathered} y =2.\dfrac{19}{7}- 3 \hfill \\x  = \dfrac{19}{7}\\\end{gathered}  \right.\)\(\Leftrightarrow\left\{ \begin{gathered} x =\dfrac{19}{7} \hfill \\y  = \dfrac{17}{7}\\\end{gathered}  \right.\)

Suy ra hệ phương trình \(\left\{ \begin{gathered} 2x - y = 3 \hfill \\ - 5x + 6y = 1 \hfill \\\end{gathered}  \right.\) có nghiệm là \(\Leftrightarrow\left\{ \begin{gathered} x =\dfrac{19}{7} \hfill \\y  = \dfrac{17}{7}\\\end{gathered}  \right.\)

Vậy chọn \(\,\,\left( D \right)\,\left( {\dfrac{{19}}{7}\,\,;\,\,\dfrac{{17}}{7}} \right)\).

dapandethi.vn