Đề bài

Hình thang \(ABCD \,(AB//CD)\) có \(AC\) và \(BD\) cắt nhau tại \(O, AD\) và \(BC\) cắt nhau tại \(K\). Chứng minh rằng \(OK\) đi qua trung điểm của các cạnh \(AB\) và \(CD\).

Phương pháp giải - Xem chi tiết

Qua \(O\) kẻ đường thẳng song song với \(AB, CD\) cắt \(AD, BC\) lần lượt tại \(E, F\).

- Chứng minh \(\dfrac{{AN}}{{EO}}=\dfrac{{BN}}{{FO}}\).

- Chứng minh \(\dfrac{{EO}}{{DM}}=\dfrac{{FO}}{{CM}}\).

Lời giải chi tiết

Qua \(O\) kẻ \(EF//AB\left( {E \in AD,F \in BC} \right)\) (h.54)

Trước hết hãy chứng minh rằng \(OE=OF\).

Xét \(\Delta DAC\) có \(EO//DC\) nên ta có:

\(\dfrac{{EO}}{{DC}} = \dfrac{{AO}}{{AC}}\) (1)

Xét \(\Delta DBC\) có \(OF//DC\) nên ta có:

\(\dfrac{{OF}}{{DC}} = \dfrac{{BO}}{{BD}}\) (2)

Vì \(AB//CD\) nên ta có:

\(\dfrac{{OA}}{{OC}} = \dfrac{{OB}}{{OD}}\) \( \Rightarrow \dfrac{{OA}}{{AC}} = \dfrac{{OB}}{{BD}}\) (3)

Từ các đẳng thức (1), (2) và (3) suy ra \(\dfrac{{EO}}{{DC}} = \dfrac{{OF}}{{DC}} \Rightarrow EO = OF\) (4)

Từ \(AB//EF\), ta có:

\(\dfrac{{AN}}{{EO}} = \dfrac{{KN}}{{KO}}\) và \(\dfrac{{KN}}{{KO}} = \dfrac{{BN}}{{OF}}\) suy ra \(\dfrac{{AN}}{{EO}} = \dfrac{{BN}}{{OF}}\) \( \Rightarrow AN = BN\) (vì \(EO = OF\)).

Vậy \(N\) là trung điểm của \(AB\).

Tương tự như vậy, từ \(CD//EF\), ta có:

\(\dfrac{{EO}}{{DM}} = \dfrac{{KO}}{{KM}}\) và \(\dfrac{{KO}}{{KM}} = \dfrac{{OF}}{{CM}}\); suy ra \(\dfrac{{EO}}{{DM}} = \dfrac{{OF}}{{CM}}\) \( \Rightarrow DM = CM\) (vì \(EO = OF\)).

Vậy \(M\) là trung điểm của \(CD\).

dapandethi.vn