Đề bài

Tìm giá trị lớn nhất của hàm số  \(y = \sqrt {1 - x}  + \sqrt {1 + x} \) trên \(\left[ { - 1,1} \right]\)

A. max \(y = 0\)               B. max \(y = 2\)

C. max \(y = 4\)               D. max \(y = \sqrt 2 \)

Phương pháp giải - Xem chi tiết

Bình phương và sử dụng bất đẳng thức Cô-si \(2\sqrt {ab}  \le a + b\)

Lời giải chi tiết

\(\begin{array}{l}
{y^2} \\= 1 - x + 1 + x + 2\sqrt {\left( {1 - x} \right)\left( {1 + x} \right)} \\
= 2 + 2\sqrt {\left( {1 - x} \right)\left( {1 + x} \right)} \\
\le 2 + \left( {1 - x} \right) + \left( {1 + x} \right)\\
= 2 + 2 = 4\\
\Rightarrow {y^2} \le 4 \Rightarrow y \le 2\\
\Rightarrow \max y = 2
\end{array}\)

Ta thấy khi \(x = 0\) thì \(y = 2\).

Vậy đáp án B đúng.

dapandethi.vn