Đề bài

Cho tam giác ABC cân tại A. Trên tia đối của tia BA lây điểm M, trên tia đối của tia CA lấy điểm N sao cho MB = NC. Kẻ \(MI \bot BC(I \in BC)\)  và \(NK \bot BC(K \in BC).\)  Chứng minh rằng :

a) \(\Delta MBI = \Delta NCK.\)

b) \(\Delta AIK\) cân.

c) IK // MN.

Lời giải chi tiết

 

a)Ta có: \(\eqalign{  & \widehat {ABC} = \widehat {IBM}  \cr  & \widehat {ACB} = \widehat {KCN} \cr} \)  (hai góc đối đỉnh)

Mà \(\widehat {ABC} = \widehat {ACB}(\Delta ABC\) cân tại A) nên \(\widehat {IBM} = \widehat {KCN.}\)

Xét tam giác MBI vuông tại I và tam giác NCK vuông tại K ta có:

\(\eqalign{  & \widehat {IBM} = \widehat {KCN}(cmt)  \cr  & MB = NC(gt) \cr} \)

Do đó: \(\Delta MBI = \Delta NCK\)  (cạnh huyền - góc nhọn)

b) Ta có: AB = AC (tam giác ABC cân tại A) và BM = CN (giả thiết)

=>AB + BM = AC + CN => AM = AN.

Xét tam giác AIM và AKN ta có:

\(\eqalign{  & IM = KN(\Delta MBI = \Delta NCK)  \cr  & \widehat {IMA} = \widehat {KNA}(\Delta MBI = \Delta NCK) \cr} \)

Do đó: \(\Delta AIM = \Delta AKN(c.g.c) \Rightarrow AI = AK.\)   Vậy tam giác AIK cân tại A.

c) Tam giác ABC cân tại A \(\Rightarrow \widehat {ABC} = \widehat {ACB}.\)  Do đó: \(\widehat {ABC} = {{{{180}^0} - \widehat {BAC}} \over 2}(1)\)

Mặt khác AM = AN => tam giác AMN cân tại A \(\Rightarrow \widehat {AMN} = \widehat {ANM}.\)

Do đó: \(\widehat {AMN} = {{{{180}^0} - \widehat {BAC}} \over 2}(2)\)

Từ (1) và (2) ta có: \(\widehat {ABC} = \widehat {AMN}.\)

Mà hai góc ABC và AMN đồng vị. Vậy IK // MN.

dapandethi.vn