Đề bài
Cho điểm \(A(1 ; 3)\) và đường thẳng \(\Delta : x - 2y + 1 = 0\). Viết phương trình đường thẳng đối xứng với \(\Delta \) qua \(A.\)
Lời giải chi tiết
Cách 1:Thay tọa độ điểm \(A\) vào \(\Delta \), ta có \(1 - 2.3 + 1 = - 4 \ne 0\), suy ra \(A \notin \Delta \).
Lấy \(M(1 ; 1) \in \Delta \). Khi đó điểm \(M’\) đối xứng với \(M\) qua \(A\) có tọa độ \(M’=(1 ; 5)\). Đường thẳng \(\Delta '\) đối xứng với \(\Delta \) qua \(A\) sẽ đi qua \(M’\) và song song với \(\Delta \). Từ đó ta có phương trình của \(\Delta '\) là \(x-2y+9=0.\)
Cách 2: Xét điểm \(M(x_1 ; y_1)\) tùy ý thuộc \(\Delta \) và gọi \(M’(x_2 ; y_2)\) là điểm đối xứng của \(M\) qua \(A\). Suy ra \({x_1} = 2 - {x_2} ; {y_1} = 6 - {y_2}\).
\(\begin{array}{l}M \in \Delta \Leftrightarrow {x_1} - 2{y_1} + 10\\ \Leftrightarrow 2 - {x_2} - 2(6 - {y_2}) + 1 = 0\\ \Leftrightarrow {x_2} - 2{y_2} + 9 = 0\\ \Leftrightarrow M' \in \Delta ' : x - 2y + 9 = 0.\end{array}\)
dapandethi.vn