Đề bài

Chứng minh rằng tích các khoảng cách từ một điểm bất kì thuộc hypebol đến hai đường tiệm cận của nó là một số không đổi

Phương pháp giải - Xem chi tiết

Cho hypebol  \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)

+ Hai đường tiệm cận \(y =  - \frac{b}{a}x\) và \(y = \frac{b}{a}x\)

Lời giải chi tiết

Gọi PTCT của hypebol là:  \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)

Hai đường tiệm cận \({d_1}:y =  - \frac{b}{a}x\) và \({d_2}:y = \frac{b}{a}x\)

Lấy \(M({x_0};{y_0})\) bất kì thuộc hypebol.

\(d(M,{d_1}) = \frac{{\left| {\frac{b}{a}{x_0} + {y_0}} \right|}}{{\sqrt {{{\left( {\frac{b}{a}} \right)}^2} + 1} }};d(M,{d_2}) = \frac{{\left| {\frac{b}{a}{x_0} - {y_0}} \right|}}{{\sqrt {{{\left( {\frac{b}{a}} \right)}^2} + 1} }}.\)

\( \Rightarrow d(M,{d_1}).d(M,{d_2}) = \frac{{\left| {\left( {\frac{b}{a}{x_0} + {y_0}} \right)\left( {\frac{b}{a}{x_0} - {y_0}} \right)} \right|}}{{{{\left( {\frac{b}{a}} \right)}^2} + 1}} = \frac{{\left| {{{\left( {\frac{b}{a}} \right)}^2}{x_0}^2 - {y_0}^2} \right|}}{{{{\left( {\frac{b}{a}} \right)}^2} + 1}}\)

Mà \(M({x_0};{y_0})\)thuộc hypebol nên \(\frac{{{x_0}^2}}{{{a^2}}} - \frac{{{y_0}^2}}{{{b^2}}} = 1\) hay \({\left( {\frac{b}{a}} \right)^2}{x_0}^2 - {y_0}^2 = {b^2}\)

\( \Rightarrow d(M,{d_1}).d(M,{d_2}) = \frac{{{b^2}}}{{{{\left( {\frac{b}{a}} \right)}^2} + 1}} = \frac{{{a^2}.{b^2}}}{{{a^2} + {b^2}}}\) là hằng số (đpcm)