Lựa chọn câu để xem lời giải nhanh hơn

Viết điều kiện của các phương trình sau:

LG a

\(\sqrt {2x + 1}  = \dfrac{1}{x}\);

Phương pháp giải:

- Biểu thức \(\sqrt {P\left( x \right)} \) xác định nếu \(P\left( x \right) \ge 0\).

- Biểu thức \(\dfrac{{P\left( x \right)}}{{Q\left( x \right)}}\) xác định nếu \(Q\left( x \right) \ne 0\).

Giải chi tiết:

ĐK: \(\left\{ \begin{array}{l}2x + 1 \ge 0\\x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge  - \dfrac{1}{2}\\x \ne 0\end{array} \right.\)

LG b

\(\dfrac{{x + 2}}{{\sqrt {2{x^2} + 1} }} = 3{x^2} + x + 1\)

Phương pháp giải:

- Biểu thức \(\sqrt {P\left( x \right)} \) xác định nếu \(P\left( x \right) \ge 0\).

- Biểu thức \(\dfrac{{P\left( x \right)}}{{Q\left( x \right)}}\) xác định nếu \(Q\left( x \right) \ne 0\).

Giải chi tiết:

 ĐK: \(2{x^2} + 1 > 0\) \(\forall x \in R\) nên phương trình xác định với mọi \(x\).

LG c

 \(\dfrac{x}{{\sqrt {x - 1} }} = \dfrac{2}{{\sqrt {x + 3} }}\)

Phương pháp giải:

- Biểu thức \(\sqrt {P\left( x \right)} \) xác định nếu \(P\left( x \right) \ge 0\).

- Biểu thức \(\dfrac{{P\left( x \right)}}{{Q\left( x \right)}}\) xác định nếu \(Q\left( x \right) \ne 0\).

Giải chi tiết:

 ĐK: \(\left\{ \begin{array}{l}x - 1 > 0\\x + 3 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 1\\x >  - 3\end{array} \right.\) \( \Leftrightarrow x > 1\).

LG d

\(\dfrac{{2x + 3}}{{{x^2} - 4}} = \sqrt {x + 1} \)

Phương pháp giải:

- Biểu thức \(\sqrt {P\left( x \right)} \) xác định nếu \(P\left( x \right) \ge 0\).

- Biểu thức \(\dfrac{{P\left( x \right)}}{{Q\left( x \right)}}\) xác định nếu \(Q\left( x \right) \ne 0\).

Giải chi tiết:

ĐK: \(\left\{ \begin{array}{l}{x^2} - 4 \ne 0\\x + 1 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne  \pm 2\\x \ge  - 1\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x \ge  - 1\\x \ne 2\end{array} \right.\).

dapandethi.vn