Đề bài
Cho hàm số
\(y = f(x) = \left\{ \begin{array}{l}\dfrac{{2x - 3}}{{x - 1}}{\rm{ }}\text { với }x \le 0\\ - {x^2} + 2x{\rm{ }} \text { với }x > 0\end{array} \right.\)
Tính giá trị của hàm số đó tại \(x = 5;x = - 2;x = 0;x = 2\).
Phương pháp giải - Xem chi tiết
Kiểm tra với mỗi giá trị của \(x\) thì \(x\) thuộc khoảng nào và \(f\left( x \right)\) bằng gì sau đó thay giá trị của \(x\) vào biểu thức đó rồi tính
Lời giải chi tiết
Với \(x = 5 > 0\) ta có: \(f(5) = - {5^2} + 2.5 = - 25 + 10 = - 15\)
Với \(x = - 2 < 0\) ta có:\(f( - 2) = \dfrac{{2.( - 2) - 3}}{{ - 2 - 1}} = \dfrac{7}{3}\)
Với \(x = 0\) ta có:\(f(0) = \dfrac{{2.0 - 3}}{{0 - 1}} = 3\).
Với \(x = 2 > 0\) ta có:\(f(2) = {\left( { - 2} \right)^2} + 2.2 = 0\)
dapandethi.vn