Đề bài
Nghiệm dương nhỏ nhất của phương trình \(\sqrt{3}\tan x+\sqrt{3}\cot x-4=0\) là
A. \(\dfrac{\pi}{6}\) B. \(\dfrac{\pi}{3}\)
C. \(\dfrac{\pi}{4}\) D. \(\dfrac{\pi}{5}\).
Phương pháp giải - Xem chi tiết
Tìm ĐKXĐ cho phương trình, ĐKXĐ của hàm số \(y=\dfrac{f(x)}{g(x)}\) là \(g(x)\ne 0\).
Giải phương trình bằng cách sử dụng công thức \(\cot x=\dfrac{1}{\tan x}\), quy đồng và đưa phương trình về dạng phương trình bậc hai đối với hàm lượng giác \(\tan x\).
Phương trình \(\tan x=\tan\alpha\) có nghiệm là \(x=\alpha+k\pi ,k\in\mathbb{Z}\).
Lời giải chi tiết
ĐKXĐ: \(\cos x\ne 0\) và \(\sin x\ne 0\).
Ta có: \(\sqrt{3}\tan x+\sqrt{3}\cot x-4=0\)
\(\Leftrightarrow \sqrt{3}\tan x+\sqrt{3}\dfrac{1}{\tan x}-4=0\)
\(\Leftrightarrow \sqrt{3}{\tan}^2 x+\sqrt{3}-4\tan x=0\)
\( \Leftrightarrow \left[ \begin{array}{l}\tan x=\sqrt{3} \text{(thỏa mãn)}\\\tan x=\dfrac{1}{\sqrt{3}}\text{(thỏa mãn)}\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x=\dfrac{\pi}{3}+k\pi,k\in\mathbb{Z} \\ x=\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\end{array} \right.\)
Với \( x=\dfrac{\pi}{3}+k\pi \) nghiệm dương nhỏ nhất là \(\dfrac{\pi}{3}\) tại \(k=0\)
Với \( x=\dfrac{\pi}{6}+k\pi \) nghiệm dương nhỏ nhất là \(\dfrac{\pi}{6}\) tại \(k=0\)
Vì \(\dfrac{\pi}{6}<\dfrac{\pi}{3}\) nên nghiệm dương nhỏ nhất là \(\dfrac{\pi}{6}\)
Đáp án: A.
Cách trắc nghiệm:
Xét các giá trị từ nhỏ tới lớn trong các phương án.
Nhỏ nhất là giá trị π/6. Khi đó, tanπ/6 = 1/√3, cotπ/6 = √3, thay vào phương trình thấy thỏa mãn.
Vậy π/6 là nghiệm dương nhỏ nhất của phương trình.
dapandethi.vn