Đề bài

Giải phương trình sau \(2{\sin}^2x+\sin x\cos x-{\cos}^2 x=3\).

Phương pháp giải - Xem chi tiết

Phương pháp giải phương trình đẳng cấp đối với \(\sin\) và \(\cos\): \(a{\sin}^2 x+b\sin x\cos x+c{\cos}^2 x=d\)

Bước 1: Xét \(\cos x=0\) có là nghiệm của phương trình hay không?

Bước 2: Khi \(\cos x\ne0\)

- Chia cả 2 vế của phương trình cho \({\cos}^2 x\) ta được: \(a\dfrac{{\sin}^2 x}{{\cos}^2 x}+b\dfrac{\sin x}{\cos x}+c=\dfrac{d}{{\cos}^2 x}\)

- Sử dụng công thức \(\tan x=\dfrac{\sin x}{\cos x}\); \(\dfrac{1}{{\cos}^2 x}={\tan}^2 x+1\) đưa phương trình về dạng: 

\(a{\tan}^2 x+b\tan x+c=d(1+{\tan}^2 x)\)\(\Leftrightarrow (a−d){\tan}^2 x+b\tan x+c−d=0\)

- Giải phương trình lượng giác cơ bản của \(\tan\):

\(\tan x=\tan \alpha\)

\(\Leftrightarrow x=\alpha+k\pi ,\in\mathbb{Z}\) và đối chiếu với điều kiện.

Lời giải chi tiết

Với \(\cos x=0\) ta thấy \(VT=2\ne1=VP\) nên không là nghiệm của phương trình.

Với \(\cos x\ne 0\) chia hai vế phương trình cho \({\cos}^2 x\) ta được

\(2\dfrac{{\sin}^2 x}{{\cos}^2 x}+\dfrac{\sin x}{\cos x}-1=\dfrac{3}{{\cos}^2 x}\)

\(\Leftrightarrow 2{\tan}^2 x+\tan x-1=3({\tan}^2+1)\)

\(\Leftrightarrow {\tan}^2 x-\tan x+4=0 \text{(vô nghiệm)}\)

Vậy phương trình đã cho vô nghiệm.

 dapandethi.vn