Đề bài

Cho tam giác \(ABC\) có trung tuyến \(AM\). Trên cạnh \(AC\) lấy hai điểm \(E\) và \(F\) sao cho \(AE = EF= FC\); \(BE\) cắt \(AM \) tại \(N\). Chứng minh \(\overrightarrow {NA} \) và \(\overrightarrow {NM} \) là hai vec tơ đối nhau.

Phương pháp giải - Xem chi tiết

Ta chứng minh \(N\) là trung điểm của \(AM\) dựa vào đường trung bình của tam giác

Lời giải chi tiết

Xét tam giác \(CEB,\) ta có:

\(F\) là trung điểm \(CE \) (do \(CF = FE\) )

\(M\) là trung điểm \(CB \)

Suy ra \(FM // BE \) hay \(FM // EN \)

Lại có \(EA = EF\).

 \( \Rightarrow  EN\) là đường trung bình của tam giác \(AFM\).

Do đó \(N\) là trung điểm của \(AM\) và \(\overrightarrow {NA}  =  - \overrightarrow {NM} \).

dapandethi.vn