Đề bài

Giá trị nhỏ nhất và lớn nhất của hàm số \(y = {\cos ^6}x + {\sin ^6}x\) tương ứng là

A. \(\dfrac{1}{4}\) và \(1\)                     B. \(\dfrac{3}{5}\) và \(\dfrac{3}{4}\)  

C. \(\dfrac{1}{2}\) và \(\dfrac{{\sqrt 2 }}{2}\)                D. \(\dfrac{2}{3}\) và \(\dfrac{{\sqrt 3 }}{2}\)  

Phương pháp giải - Xem chi tiết

Biến đổi \({\cos ^6}x + {\sin ^6}x\) về dạng biểu thức chỉ chứa \(\sin f(x)\) hoặc \(\cos f(x)\).

Ta có \(\left| {\sin f(x)} \right| \le 1\) và \(\left| {\cos f(x)} \right| \le 1\) từ đó suy ra được giá trị lớn nhất và nhỏ nhất của hàm số.

Lời giải chi tiết

\({\cos ^6}x + {\sin ^6}x=\)

\(({\cos ^2}x + {\sin ^2}x)({\cos ^4}x - {\cos ^2}x{\sin ^2}x + {\sin ^4}x)\)

\(={({\cos ^2}x + {\sin ^2}x)^2} - 3{\cos ^2}x{\sin ^2}x\)

\(= 1 - 3{(\dfrac{{\sin 2x}}{2})^2} = 1 - \dfrac{3}{4}{\sin ^2}2x\)

\(\begin{array}{l}
= 1 - \dfrac{3}{4}\left( {1 - {{\cos }^2}2x} \right)\\
= 1 - \dfrac{3}{4} + \dfrac{3}{4}{\cos ^2}2x
\end{array}\)

\(= \dfrac{1}{4} + \dfrac{3}{4}{\cos ^2}2x\)

Mà \(0 \le {\cos ^2}2x \le 1 \)

\(\Rightarrow 0 \le \dfrac{3}{4}{\cos ^2}2x \le \dfrac{3}{4}\)

\( \Rightarrow \dfrac{1}{4} \le \dfrac{1}{4} + \dfrac{3}{4}{\cos ^2}2x \le 1\)

\(\Rightarrow \dfrac{1}{4} \le y \le 1\)

Vậy giá trị nhỏ nhất của hàm số \(y\) là \(\dfrac{1}{4}\) đạt được khi \(\cos 2x = 0\),

Giá trị lớn nhất của hàm số \(y\) là \(1\) đạt được khi \(\cos 2x = 1\).

Đáp án A.

Cách trắc nghiệm:

Khi x = 0 thì y = 1 lớn hơn 3/4, lớn hơn √2/2 và lớn hơn √3/2, nên ba phương án B, C, D bị loại.

dapandethi.vn