Lựa chọn câu để xem lời giải nhanh hơn

Câu hỏi tr 37

Hãy tìm thêm ví dụ về chuyển động biến đổi trong cuộc sống.

Phương pháp giải:

Liên hệ thực tế

Lời giải chi tiết:

Ví dụ về chuyển động biến đổi trong cuộc sống:

+ Máy bay đang bay trên bầu trời

+ Xe máy đang chuyển động trên đường

+ Con muỗi đang bay...

Câu hỏi tr 38 CH 1

1. Xác định độ biến thiên vận tốc sau 8 s của chuyển động trên

2. Xác định độ biến thiên của vận tốc sau mỗi giây của chuyển động trên trong 4 s đầu và trong 4 s cuối

3. Các đại lượng xác định được ở câu 2 cho ta biết điều gì về sự thay đổi vận tốc của chuyển động trên?

Phương pháp giải:

Biểu thức độ biến thiên vận tốc: \(a = \frac{{\Delta v}}{{\Delta t}}\)

Lời giải chi tiết:

1.

Bảng số liệu của chuyển động

Độ biến thiên vận tốc sau 8 s là:

\(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{12,5}}{8} = 1,5625(m/{s^2})\)

2.

 Độ biến thiên vận tốc sau 4 s đầu chuyển động:

\(a = \frac{{\Delta {v_4}}}{{\Delta {t_4}}} = \frac{{5,28}}{4} = 1,32(m/{s^2})\)

+ Độ biến thiên vận tốc sau 4 s sau chuyển động:

\(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{12,50 - 5,28}}{4} = 1,805(m/{s^2})\)

3.

Các đại lượng được xác định trong câu 2 cho ta biết vận tốc của vật chuyển động tăng dần.

Câu hỏi tr 38 CH 2

Hãy chứng tỏ khi \(\overrightarrow a \) cùng chiều với \(\overrightarrow v \) (a.v>0) thì chuyển động là nhanh dần, khi \(\overrightarrow a \) ngược chiều với \(\overrightarrow v \) (a.v<0) thì chuyển động là chậm dần)

Phương pháp giải:

Gia tốc a cho biết sự thay đổi nhanh chậm của vận tốc.

Lời giải chi tiết:

+ Chọn chiều dương là chiều chuyển động của vật

+ Giả sử vật chuyển động theo chiều dương nên v >0

+ Khi vật chuyển động nhanh dần thì vận tốc của vật cũng tăng dần, nên theo biểu thức tính gia tốc \(a = \frac{{\Delta v}}{{\Delta t}}\) , \(\Delta v > 0\)

=> a.v>0

+ Khi vật chuyển động chậm dần thì vận tốc giảm dần, \(\Delta v < 0\)

=> a.v<0

Câu hỏi tr 39

1.

a) Tính gia tốc của ô tô trên 4 đoạn đường trong Hình 8.1.

b) Gia tốc của ô tô trên đoạn đường 4 có gì đặc biệt so với sự thay đổi vận tốc trên các đoạn đường khác?

2. Một con báo đang chạy với vận tốc 30 m/s thì chuyển động chậm dần khi tới gần một con suối. Trong 3 giây, vận tốc của nó giảm còn 9 m/s. Tính gia tốc của con báo.

3. Đồ thị ở Hình 8.2 mô tả sự thay đổi vận tốc theo thời gian trong chuyển động của một ô tô thể thao đang chạy thử về phía Bắc.

Tính gia tốc của ô tô:

a) Trong 4 s đầu.

b) Từ giây thứ 4 đến giây thứ 12.

c) Từ giây thứ 12 đến giây thứ 20.

d) Từ giây thứ 20 đến giây thứ 28.

Phương pháp giải:

+ Biểu thức tính gia tốc: \(a = \frac{{\Delta v}}{{\Delta t}}\)

+ 1 m/s = 3,6 km/h

Lời giải chi tiết:

1.

a) Đổi 5 km/h = \(\frac{{25}}{{18}}\)m/s; 29 km/h = \(\frac{{145}}{{18}}\)m/s; 49 km/h = \(\frac{{245}}{{18}}\); 30 km/h = \(\frac{{25}}{3}\)m/s

+ Gia tốc trong đoạn đường 1: \(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{25}}{{18.1}} = \frac{{25}}{{18}} \approx 1,39(m/{s^2})\)

+ Gia tốc trong đoạn đường 2: \(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{\frac{{145}}{{18}} - \frac{{25}}{{18}}}}{{4 - 1}} \approx 2,22(m/{s^2})\)

+ Gia tốc trong đoạn đường 3: \(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{\frac{{245}}{{18}} - \frac{{145}}{{18}}}}{{6 - 4}} \approx 2,78(m/{s^2})\)

+ Gia tốc trong đoạn đường 4: \(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{\frac{{25}}{3} - \frac{{245}}{{18}}}}{{7 - 6}} \approx  - 5,28(m/{s^2})\)

b) Trong 4 đoạn đường trên, vận tốc tăng dần, còn gia tốc từ đoạn đường 1 đến đoạn đường 3 tăng dần, nhưng từ đoạn đường 3 đến đoạn đường 4 thì gia tốc giảm dần.

2.

Gia tốc của con báo là:

\(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{9 - 30}}{3} =  - 7(m/{s^2})\)

3.

a) Trong 4 s đầu:

\(\begin{array}{l}\Delta v = 20(m/s);\Delta t = 4(s)\\ \Rightarrow a = \frac{{\Delta v}}{{\Delta t}} = \frac{{20}}{4} = 5(m/{s^2})\end{array}\)

b) Từ giây thứ 4 đến giây thứ 12

\(\begin{array}{l}\Delta v = 20 - 20 = 0(m/s);\Delta t = 12 - 4 = 8(s)\\ \Rightarrow a = \frac{{\Delta v}}{{\Delta t}} = 0(m/{s^2})\end{array}\)

c) Từ giây thứ 12 đến giây thứ 20:

\(\begin{array}{l}\Delta v = 0 - 20 =  - 20(m/s);\Delta t = 20 - 12 = 8(s)\\ \Rightarrow a = \frac{{\Delta v}}{{\Delta t}} = \frac{{ - 20}}{8} =  - 2,5(m/{s^2})\end{array}\)

d) Từ giây thứ 20 đến giây thứ 28:

\(\begin{array}{l}\Delta v =  - 20 - 0 =  - 20(m/s);\Delta t = 28 - 20 = 8(s)\\ \Rightarrow a = \frac{{\Delta v}}{{\Delta t}} = \frac{{ - 20}}{8} =  - 2,5(m/{s^2})\end{array}\)