Đề bài

Tính và rút gọn: \({{y + 1} \over {2y - 2}} + {{ - 2y} \over {{y^2} - 1}}\) .

Lời giải chi tiết

Ta có:

\(\eqalign{  & 2y - 2 = 2\left( {y - 1} \right)  \cr  & {y^2} - 1 = \left( {y - 1} \right)\left( {y + 1} \right)  \cr  & MTC = 2\left( {y - 1} \right)\left( {y + 1} \right)  \cr  & {{y + 1} \over {2y - 2}} + {{ - 2y} \over {{y^2} - 1}} = {{\left( {y + 1} \right)\left( {y + 1} \right)} \over {2\left( {y - 1} \right)\left( {y + 1} \right)}} + {{ - 2y.2} \over {2\left( {y - 1} \right)\left( {y + 1} \right)}}  \cr  &  = {{{{\left( {y - 1} \right)}^2} - 4y} \over {2\left( {y - 1} \right)\left( {y + 1} \right)}} = {{{y^2} + 2y + 1 - 4y} \over {2\left( {y - 1} \right)\left( {y + 1} \right)}}  \cr  &  = {{{y^2} - 2y + 1} \over {2\left( {y - 1} \right)\left( {y + 1} \right)}} = {{{{\left( {y - 1} \right)}^2}} \over {2\left( {y - 1} \right)\left( {y + 1} \right)}} = {{y - 1} \over {2\left( {y + 1} \right)}} \cr} \)

dapandethi.vn