Đề bài

Giả sử khi áp dụng công thức nguyên hàm từng phần, ta dẫn đến

               \(\int {f\left( x \right)} dx = aG\left( x \right) - b\int {f\left( x \right)} dx\)

Với \(b \ne 1\)

Chứng minh rằng

                                \(\int {f\left( x \right)} dx = {{aG\left( x \right)} \over {b + 1}} + C\) với C là hằng số.

Lời giải chi tiết

Ta có: \(\int {f\left( x \right)dx + b} \int {f\left( x \right)} dx = aG\left( x \right) + {C_1}\) (\({C_1}\) là hằng số nào đó).

Hay \(\left( {b + 1} \right)f\left( x \right)dx = aG\left( x \right) + {C_1}\)

Do đó: \(\int {f\left( x \right)dx}  = {{aG\left( x \right)} \over {b + 1}} + {{{C_1}} \over {b + 1}} = {{aG\left( x \right)} \over {b + 1}} + C\)

dapandethi.vn