Lựa chọn câu để xem lời giải nhanh hơn

Tìm m để mỗi phương trình sau có nghiệm duy nhất:

LG a

\({16^{x + 1}} + {4^{x - 1}} - 5m = 0;\)

Lời giải chi tiết:

Đặt \({4^x} = t(t > 0)\). Bài toán trở thành:

Tìm m để phương trình \(16{t^2} + \dfrac{t}{4} - 5m = 0\) (1) có  nghiệm dương duy nhất.            

Điều kiện để (1) có nghiệm là \(\Delta  = \dfrac{1}{16} + 320m \ge0\) hay \(m\ge  - {1 \over {5120}}\) . Lại có \({t_1} + {t_2} =  - \dfrac{1}{64}<0;{t_1}{t_2} =  - \dfrac{5m}{16}\) .

Nên (1) có nghiệm dương duy nhất khi \({t_1}{t_2} =   - \dfrac{5m}{16} < 0\), tức là m > 0.

LG b

\(2{\log _2}\left( {x + 4} \right) = {\log _2}\left( {mx} \right).\)

Lời giải chi tiết:

Bài toán quy về tìm để hệ

\(\left\{ \matrix{{(x + 4)^2} = mx \hfill \cr x + 4 > 0 \hfill \cr}  \right.\)                        

có nghiệm duy nhất

Hay  

\(\left\{ \matrix{{x^2} + (8 - m)x + 16 = 0\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right) \hfill \cr x >  - 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2\right) \hfill \cr}  \right.\) có nghiệm duy nhất

Tức là (1) có nghiệm duy nhất thỏa mãn \(x >  - 4\).

Phương trình (1) có nghiệm khi\(\Delta  = {m^2} - 16m \ge 0\) hay \(m \le 0\) hoặc \(m \ge 16\) .

Xét các trường hợp :

+) \(m = 0\) thì (1) có nghiệm kép \({x_1} = {x_2} = {{0 - 8} \over 2} =  - 4\) ( không thỏa mãn \(x >  - 4\) ).

+) \(m = 16\) thì (1) có nghiệm kép \({x_1} = {x_2} = {{16 - 8} \over 2} = 4\) (  thỏa mãn \(x >  - 4\) ).

+) \(m < 0\) hoặc \(m > 16\) thì (1) có hai nghiệm phân biệt \({x_1},{x_2}({x_1} < {x_2})\) .

(1) có nghiệm duy nhất thỏa mãn \(x >  - 4\) khi và chỉ khi \({x_1} <  - 4 < {x_2} \Leftrightarrow ({x_1} + 4)({x_2} + 4) < 0 \)

\(\Leftrightarrow {x_1}{x_2} + 4({x_1} + {x_2}) + 16 < 0\) .

Theo hệ thức . Vi-et ta có \({x_1}{x_2} = 16\) và \({x_1} + {x_2} = m - 8\).

Dẫn theo \(16 + 4(m - 8) + 16 < 0 \Leftrightarrow m < 0\) .

dapandethi.vn