Đề bài

Tam giác ABC có đường cao AH. Đường thẳng d // BC cắt các cạnh AB, AC và đường cao AH theo thứ tự tại các điểm B’, C’ và H’ (xem hình vẽ).

a) Chứng minh rằng: \({{AH'} \over {AH}} = {{B'C'} \over {BC}}\)

b) Áp dụng: Cho biết \(AH' = {1 \over 3}AH\) và diện tích tam giác ABC là 67,5 cm2. Tính diện tích tam giác AB’C’.

Lời giải chi tiết

a) ∆ABC có \(H'C'//HC\) \((d//BC,H',C' \in d,H \in BC)\)

\( \Rightarrow {{AH'} \over {AH}} = {{AC'} \over {AC}}\) (định lý Thales) (1)

∆ABC có \(B'C'//BC(d//BC;B',C' \in d)\)

\( \Rightarrow {{AC'} \over {AC}} = {{B'C'} \over {BC}}\) (hệ quả của định lý Thales) (2)

Từ (1) và (2) suy ra \({{AH'} \over {AH}} = {{B'C'} \over {BC}}\)

b) Ta có

\(\left\{ \matrix{  AH \bot BC(AH\,là\,đường\,cao) \hfill \cr  B'C'//BC \hfill \cr}  \right.\)\(\, \Rightarrow AH \bot B'C' \)

\(\Rightarrow AH' \bot B'C'(H' \in AH)\)

Vì \(AH' = {1 \over 3}AH \Rightarrow {{AH'} \over {AH}} = {1 \over 3} \)

\(\Rightarrow {{B'C'} \over {BC}} = {{AH'} \over {AH}} = {1 \over 3}\)

Ta có: \({{{S_{AB'C'}}} \over {{S_{ABC}}}} = {{{1 \over 2}AH'.B'C'} \over {{1 \over 2}AH.BC}} = {{AH'} \over {AH}}.{{B'C'} \over {BC}} \)\(\,= {1 \over 3}.{1 \over 3} = {1 \over 9}\)

\(\Rightarrow {{{S_{AB'C'}}} \over {67,5}} = {1 \over 9}\)

Do đó \({S_{AB'C'}} = {{67,5} \over 9} = 7,5(c{m^2})\)

dapandethi.vn