Đề bài

Giải phương trình:

\(\dfrac{{x + 1}}{9} + \dfrac{{x + 2}}{8} = \dfrac{{x + 3}}{7} + \dfrac{{x + 4}}{6}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Cộng \(2\) vào hai vế của phương trình sau đó giải phương trình mới để tìm \( x\).

Lời giải chi tiết

Cộng \(2\) vào hai vế của phương trình, ta được:

\(\dfrac{{x + 1}}{9} + 1 + \dfrac{{x + 2}}{8} + 1 = \dfrac{{x + 3}}{7} + 1\)\(\, + \dfrac{{x + 4}}{6} + 1\)

\( \Leftrightarrow \dfrac{{x + 10}}{9} + \dfrac{{x + 10}}{8} = \dfrac{{x + 10}}{7} \)\(\,+ \dfrac{{x + 10}}{6}\)

\( \Leftrightarrow \dfrac{{x + 10}}{9} + \dfrac{{x + 10}}{8} - \dfrac{{x + 10}}{7}\)\(\, - \dfrac{{x + 10}}{6}=0\)

\( \Leftrightarrow \left( {x + 10} \right)\left( {\dfrac{1}{9} + \dfrac{1}{8} - \dfrac{1}{7} - \dfrac{1}{6}} \right) = 0{\kern 1pt}\)\( \;(*)\)

Vì \(\dfrac{1}{9} < \dfrac{1}{7};\dfrac{1}{8} < \dfrac{1}{6}\) nên \(\dfrac{1}{9} + \dfrac{1}{8} - \dfrac{1}{7} - \dfrac{1}{6} < 0\)

 \((*) \Leftrightarrow   x+10 = 0 \)

\(\Leftrightarrow  x= -10 \)

Vậy phương trình có nghiệm duy nhất \(x = -10\).

dapandethi.vn